Модельный двигатель для определения скорости горения трт в напряженно-деформированном состоянии

 

Модельный двигатель для определения скорости горения твердого ракетного топлива в напряженно-деформированном состоянии содержит цилиндрический, бронированный по наружной поверхности канальный заряд твердого ракетного топлива, цилиндрический корпус с торцевыми крышками, датчик давления и сопло. Заряд имеет эластичное бронепокрытие и герметично вклеен в корпус в районе торцевых крышек. Внутренняя поверхность корпуса имеет диаметр, равный диаметру заряда ФЗ. Внутренняя поверхность корпуса в средней части корпуса имеет диаметр, который больше диаметра заряда на величину двойного максимального зазора MAX между зарядом и корпусом. В этой же части корпуса расположена цилиндрическая вставка толщиной ВСТ = MAX-ЗКАН)/4, где - заданная деформация твердого ракетного топлива, фКАН - диаметр канала заряда, в корпусе и во вставке высверлены сквозные отверстия диаметром не более MAX. Изобретение позволяет определить скорость горения модельного заряда твердого топлива в напряженно-деформированном состоянии в условиях, приближенных к условиям натурного ракетного двигателя твердого топлива. 4 ил.

Изобретение относится к ракетной технике, в частности к установкам для определения скорости горения твердого ракетного топлива (ТРТ) в напряженно-деформированном состоянии.

В настоящее время известны установки для определения скорости горения ТРТ с использованием для регистрации положения поверхности горения перегорающих проводников, киносъемки, светорегистраторов (см. М. Баррер и др. "Ракетные двигатели", Оборонгиз, М. , 1962, стр. 207; В.С. Игнатьев и др. "Устройство для измерения скорости горения композиционных материалов". - Заявка РФ 98102477 от 10.02.98 г.). Эти установки могут быть использованы для определения скорости горения ТРТ в напряженно-деформированном состоянии. Однако определенная в них скорость горения не соответствует скорости горения в натурном ракетном двигателе твердого топлива (РДТТ). Это связано с тем, что скорость горения определяется в этих установках на небольших образцах, и результаты по скорости горения отличаются от данных в натурном РДТТ при тех же давлениях и деформациях ТРТ. Также при испытаниях в таких установках необходим предварительный наддув камеры сгорания азотом до заданного давления из баллонов большого давления, что также является недостатком.

За прототип изобретения принят модельный двигатель (МД), используемый для определения скорости горения ТРТ, описанный в статье "Некоторые проблемы исследования установившегося горения смесевых твердых топлив" (Д.В. Блэйр, Е.К. Бастресс, С.Е. Германс, К.П. Холл, М. Саммерфилд. Сборник "Исследование РДТТ" под редакцией М. Саммерфилда, Иностранная литература, Москва, 1963, стр. 135-137). Данный МД представляет собой цилиндрическую камеру сгорания с соплом для истечения продуктов сгорания, воспламенителем и датчиком измерения давления. Бронированный по боковой поверхности заряд обеспечивает радиальное горение ТРТ. Скорость радиального горения заряда ТРТ определяется по результатам испытаний МД и рассчитывается исходя из известного свода L горения заряда и времени горения заряда tз. В простейшем случае скорость горения определяется по формуле U = L/tз, (1) где L = (ФЗ-2ПКАН)/2, ФКАН - диаметр канала заряда, ФЗ - диаметр заряда, П - толщина эластичного бронепокрытия, tз - время горения заряда, определенное по экспериментальной зависимости давления Р в камере сгорания от времени t (фиг.1), как это показано, например, в кн.: В.В.Рожков. "Ракетные двигатели твердого топлива". - М.: Воениздат, 1963.

Полученная таким образом скорость горения ставится в соответствие со средним давлением Рср за время горения заряда t3. МД позволяет определять скорость горения в условиях, приближенных к условиям натурного РДТТ. В то же время в таком МД нет возможности деформировать заряд ТРТ так, чтобы определять скорость горения в напряженно-деформированном состоянии. Поэтому недостатком установки является невозможность растяжения образца ТРТ для создания заданной деформации , т.е. напряженно-деформированного состояния заряда во время проведения испытания.

Технической задачей изобретения является создание модельного двигателя для определения скорости горения ТРТ в напряженно-деформированном состоянии, позволяющего определять скорость горения в условиях, приближенных к условиям натурного РДТТ.

Поставленная задача решается тем, что в модельном двигателе, содержащем цилиндрический корпус с торцевыми крышками, датчик давления и сопло, канальный цилиндрический заряд ТРТ бронирован по наружной поверхности эластичным бронепокрытием. Это позволяет заряду деформироваться, не нарушая целостности бронепокрытия. Заряд герметично вклеен по боковой поверхности в корпус в районе торцевых крышек, где внутренняя поверхность корпуса имеет диаметр, равный диаметру заряда ФЗ. Внутренняя поверхность корпуса в средней части корпуса имеет диаметр DНДС, больший диаметра ФЗ на величину двойного максимального зазора MAX между зарядом и корпусом. В этой же части корпуса расположена цилиндрическая вставка толщиной ВСT. Герметичная вклейка заряда не допускает подъем давления в районе зазора между зарядом и корпусом при сжигании заряда. Высверленные в корпусе и во вставке сквозные отверстия диаметром не более MAX обеспечивают воздушное сообщение зазора с атмосферой. Благодаря этому заряд имеет возможность при возрастании давления в канале заряда во время сжигания деформироваться в пределах зазора = MAX-ВСT между зарядом и вставкой.

По определению - заданная средняя тангенциальная деформация заряда, при которой определяется скорость горения ТРТ. Она рассчитывается по формуле где ЛC= 3,14(ФКАНЗ)/2 - длина окружности среднего диаметра заряда до сжигания,
Таким образом, с помощью вставки, изменяя ее толщину, можно изменять задаваемую деформацию . Из формулы (2) следует
ВСT = MAX-ЗКАН)/4. (3)
Выбранный диаметр сквозных отверстий, составляющий величину, не превышающую МАХ, не допускает гофрирования поверхности бронепокрытия, когда при возрастании давления в МД боковая поверхность заряда соприкасается с внутренней поверхностью корпуса. Скорость горения в МД определяется по формуле (1), как в прототипе.

Внешний вид МД для определения скорости горения ТРТ в напряженно-деформированном состоянии показан на фиг.2. В корпусе 8 расположен заряд ТРТ 2, бронированный по наружной поверхности эластичным бронепокрытием 4. Заряд вклеен в корпус в районе торцевых крышек. Вставка 6 толщиной ВСТ расположена в средней части корпуса. Во вставке и корпусе просверлены сквозные отверстия 7. В донной торцевой крышке 3 расположен датчик давления 1, а в крышке 9 у противоположного торца расположено сопло 10. Зажжение образца производится воспламенителем 11. Заряд при горении деформируется в зазоре 5 шириной = МАХ-ВСT. На фиг.1 представлена экспериментальная зависимость давления Р в камере сгорания от времени t при сжигании заряда. Здесь Pсp - среднее давление за время горения заряда tз. На фиг.3 показано сечение А-А в МД для определения скорости горения ТРТ в напряженно-деформированном состоянии до сжигания. На фиг.4 показано то же сечение А-А во время сжигания заряда. Пунктиром показано положение канала заряда до сжигания. Внутренняя поверхность корпуса в его средней части расточена на величину МАХ - зазора между зарядом и корпусом. Технические возможности по деформации ТРТ в данном МД характеризует МАХ, т.е. эта величина определяет при отсутствии вставки (ВСT = 0) максимальную допустимую деформацию, которую можно получить в МД
МАХ = 4МАХ/(ФЗКАН).
МД работает следующим образом. Перед испытанием в него вставляется цилиндрическая вставка толщиной ВСT, в зависимости от . Толщина ВСT рассчитывается по формуле (3). В начале испытания заряд находится в ненапряженном состоянии (см. фиг.2 и 3). Воспламенитель поджигает заряд, и в МД поднимается давление. При этом заряд деформируется в тангенциальном направлении в пределах зазора = МАХ-ВСТ. Внутренний и наружный диаметр заряда увеличивается (см. фиг.4), вызывая его растяжение по окружности в среднем на величину деформации = 4/(ФЗК). Скорость горения ТРТ в НДС определяется по результатам испытания МД по формуле (1). В каждом испытании полученные значения U(Pcp, ) ставятся в соответствие с деформацией и давлением Рср. Таким образом, в одном испытании определяется одно значение скорости горения. Для получения зависимости U() необходимо провести не менее двух опытов, по крайней мере при

При испытаниях МД было установлено, что результаты определения скорости горения зарядов МД хорошо прогнозируют скорость горения натурных РДТТ.

Полученные данные могут использоваться при прогнозировании скорости горения в РДТТ в напряженно-деформированном состоянии.


Формула изобретения

Модельный двигатель для определения скорости горения ТРТ в напряженно-деформированном состоянии, содержащий цилиндрический, бронированный по наружной поверхности канальный заряд ТРТ, цилиндрический корпус с торцевыми крышками, датчик давления и сопло, отличающийся тем, что заряд имеет эластичное бронепокрытие и герметично вклеен в корпус в районе торцевых крышек, где внутренняя поверхность корпуса имеет диаметр, равный диаметру заряда ФЗ, тогда как внутренняя поверхность корпуса в средней части корпуса имеет диаметр, который больше диаметра заряда на величину двойного максимального зазора MAX между зарядом и корпусом, причем в этой же части корпуса расположена цилиндрическая вставка толщиной
ВСТ = MAX-ЗКАН)/4,
где - заданная деформация ТРТ;
ФКАН - диаметр канала заряда, в корпусе и во вставке высверлены сквозные отверстия диаметром не более MAX.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4



 

Похожие патенты:
Изобретение относится к области ракетостроения и может быть использовано при производстве кислородно-керосиновых жидкостных ракетных двигателей (ЖРД)

Изобретение относится к технике испытаний РДТТ и может быть использовано для выявления нарушений процесса функционирования двигателя

Изобретение относится к технике контроля параметров РДТТ

Изобретение относится к области ракетной техники, а конкретно к способам и устройствам для испытаний ракетных двигателей

Изобретение относится к ракетной технике, в частности к установкам для определения скорости горения твердого ракетного топлива (ТРТ) с высокой чувствительностью скорости горения от давления

Изобретение относится к области измерений, в частности измерений тяги ракетного двигателя

Изобретение относится к области исследования процессов горения в теплонапряженных топках и может быть использовано на этапе проектирования и отработки камер сгорания и газогенераторов для обеспечения их надежной и безаварийной работы

Изобретение относится к области ракетной техники и может быть использовано при отработке и проведении научно-исследовательских и проектно-конструкторских работ по созданию ракетных двигателей твердого топлива

Изобретение относится к ракетной технике и может быть использовано при экспериментальной отработке ракетных двигателей, у которых в процессе работы происходит изменение площади критического сечения сопла (унос материала, налипание конденсированной фазы и т.п.)

Изобретение относится к области испытаний ракетной техники, в частности к области исследований процесса в камере импульсного ракетного двигателя твердого топлива (РДТТ)
Наверх