Способ разделения многокомпонентного материала, содержащего металлические компоненты

 

Изобретение относится к области переработки отходов. Способ включает плавление многокомпонентного материала в графитовом тигле. Температура процесса устанавливается в пределах 1000 - 1800oС. В качестве шлакообразующего флюса используется флюс, содержащий фторид натрия в количестве, обеспечивающем вязкость шлака менее 4 мПас. После расплавления расплав перемешивают и выдерживают в жидком состоянии в течение времени, достаточного для разделения шлаковой и металлической фаз. Затем производят выпуск полученного шлака и металла, а их разделение производят механически после их затвердевания. Способ обеспечивает разделение материала на фазы, из которых возможно извлечение металлов при минимальных затратах. 3 з.п. ф-лы.

Изобретение относится к области переработки отходов, а именно к способам разделения компонентов многокомпонентного материала, содержащего металлические компоненты с целью обеспечения условий для эффективного получения вторичных металлов из отходов производств. Существует достаточно широкий класс таких многокомпонентных материалов, включающий в себя преимущественно элементы системы: металл-покрытие - металл-основа - оксиды металла-основы и других металлов. В случае использования в качестве металла-основы алюминия или его сплавов оксидная компонента всегда присутствует вследствие высокой химической активности алюминия. К указанным материалам относятся материалы, состоящие из металла-покрытия и преимущественно оксидов других металлов, например, катализаторы. К необходимым условиям относится наличие в составе многокомпонентного материала, содержащего металлические компоненты, оксидов металлов.

Способы разделения многокомпонентных материалов, содержащих металлические компоненты базируются на их различиях в физических или химических свойствах.

Известен способ электролитического разделения многокомпонентного материала, состоящего из металла-покрытия (никель, медь, алюминий и цинк) и металла-основы (железо). Скорость анодного удаления металла-покрытия - 120 мкм/ч при плотности анодного тока 7-10 А/дм2 (см. Л.Я. Попилов. Советы заводскому технологу. Справочное пособие заводскому технологу. Лениздат, 1975 г. , с.182, состав 37). Недостатки указанного способа является общими для целого ряда способов, основанных на процессах химического (электрохимического) воздействия. Такие способы являются: трудоемкими и малоэффективными; не обеспечивают выделение металлических компонентов в компактном виде и связаны с образованием большого количества экологически опасных отходов.

Известен технологический прием, используемый в гальванопластике, согласно которому после нанесения тугоплавкого металлического покрытия на основу из менее тугоплавкого металла разделение металлических компонентов осуществляют путем нагрева и выплавления металла-основы, в качестве которого часто используют алюминий или его сплавы. Применимость подобного способа резко ограничивается минимальной толщиной металла-покрытия в единицы миллиметров. Для тонких покрытий, которые не обеспечивают сохранение своей формы в процессе выплавления металла-основы способ не применим вследствие образования значительного количества оксидов металла-основы (см. П.М. Вячеславов, Г.А. Волянюк. Электролитическое формование. Ленинград, Машиностроение, ЛО, 1979 г., с. 8, 11, 23-27, 31).

Наиболее близким аналогом, принятым в качестве прототипа, является способ для переработки биметаллического скрапа, содержащего железо и цветные металлы. Скрап разрезают на небольшие куски, которые непрерывно перемешивают в печи. В процессе термообработки обеспечивается расплавление цветных металлов и таким образом осуществляется разделение низкоплавкого компонента и железа. По существу это способ разделения материала, содержащего металлические компоненты, с различными температурами плавления, включающий нагревание и выплавку материала (патент США 3615084, кл. С 22 В 7/00; US НКИ, кл. 266-33, заявл. 08.01.1969 г., опубл. 26.10.71 г.). Данный способ чувствителен к температурному режиму, а также ограничен применением для случая многокомпонентных материалов, содержащих оксидные компоненты, являющиеся весьма тугоплавкими.

В основу изобретения положена задача так организовать процесс разделения многокомпонентного материала, содержащего металлические компоненты, чтобы обеспечить эффективное разделение материала на фазы, из которых в дальнейшем возможно извлечение требуемых металлов при минимальных затратах.

Решение указанной задачи достигается тем, что в способе разделения многокомпонентного материала, содержащего металлические компоненты, включающем его нагревание и выплавку, выплавку многокомпонентного материала производят в графитовом тигле с добавлением шлакообразующего флюса на основе фторида натрия в количестве, обеспечивающем вязкость шлака менее, чем 4 мПас при температуре процесса в пределах от 1000oС до 1800oС, после чего проводят перемешивание и выдержку расплава в жидком состоянии, в течение времени, достаточного для разделения шлаковой и металлической фаз, а затем производят выпуск полученного шлака и металла, причем их разделение производят механически после затвердевания.

Графитовый тигель обеспечивает нагрев как металлических, так и оксидных материалов, и подавляет нежелательные окислительные реакции.

Использование шлакообразующего флюса на основе NaF позволяет обеспечить расплавление многокомпонентного материала за счет снижения температуры плавления оксидно-фторидных систем по сравнению с чисто оксидными. Так, для системы Nа3АlF6 (криолит) - Аl2О3 при 25 мол.% Аl2О3 температура перехода в жидкую фазу 1000oС (см. М. М. Ветюков, А.М. Цыплаков, С.Н. Школьников. Электрометаллургия алюминия и магния. М.: Металлургия, 1987, 320 с.; рис.2, с.14), в то время как температура плавления чистого Аl2О3 составляет 2042oС. Использование указанного флюса позволяет также обеспечить получение шлаковой системы с низкой вязкостью, что является необходимым условием для разделения шлаковой и металлической фаз. Для указанной выше системы вязкость при температуре 1000oС составляет 3,7 мПас, при температуре 1200oС - 2,1 мПас (см. М. М. Ветюков, А.М. Цыплаков, С.Н. Школьников. Электрометаллургия алюминия и магния. М.: Металлургия, 1987, 320 с.; рис.11, с.28), в то время как вязкость чистого Аl2О3 при 2100oС составляет 5 мПас. Минимальная температура в 1000oС ограничивается необходимой вязкостью жидкого шлака. Максимальная температура процесса в 1800oС ограничивается целым рядом факторов: карбидообразование в шлаке, улетучивание фторидов, интенсивное окисление материала тигля.

Перемешивание и выдержка жидкого расплава являются необходимыми условиями разделения фаз.

По одному из вариантов выполнения способа целесообразно многокомпонентный материал, состоящий преимущественно из металла-покрытия, оксидов алюминия и других металлов, а также неокисленного металла-основы получать из многослойного металлического материала путем выплавки и слива низкоплавкого компонента.

Такое выполнение способа обеспечивает повышение эффективности за счет переработки меньшего количества материала с более высоким содержанием металла-покрытия, а также позволяет получить металл-основу в компактном виде.

Еще по одному варианту выполнения способа в качестве многокомпонентного материала используют материал, содержащий металл-покрытие и преимущественно оксиды других металлов.

Такое выполнение способа позволяет расширить его применение для переработки отходов различных отраслей промышленности.

Еще по одному варианту выполнения способа вместе со шлакообразующим флюсом добавляют металл-растворитель массой, большей массы металла-покрытия.

Указанный признак служит для уменьшения температуры формирования металлической фазы расплава и повышения эффективности разделения компонентов при низком содержании металлов в многокомпонентном материале.

Пример осуществления способа.

Согласно пп.1, 2, 4 многокомпонентный материал получили из отходов листа толщиной 1,2 мм, выполненного из сплава АМг-3 с двухсторонним покрытием Ni толщиной 10 мкм. Отходы в количестве 42,6 кг переплавляли при температуре 640-700oС (температура плавления сплава АМг - 3-600-610oС) и производили слив легкоплавкого компонента. Масса легкоплавкого компонента составляла 38 кг, т. е. 89% от исходной. Анализ подтвердил соответствие состава металла марке АМг-3 (Mg - 3,5%; Si - 0,65%; Mn - 0,45%; Fe - 1%). Масса остатка - многокомпонентного материала составляла 5,5 кг. Привес в 1,1 кг (2,6%) - образовывался, в основном, за счет окисления алюминия. Процесс производился в графитовом тигле емкостью 3 дм3 высокочастотной электропечи (мощность электромашинного генератора до 50 кВт). В расплавленный материал добавлялся согласно п. 4 металл-растворитель в виде меди марки M1 в количестве 1 кг, превышающем исходную расчетную массу металла-покрытия и фторид натрия марки Ч в количестве 4,5 кг, заведомо обеспечивающем жидкое состояние шлака при температуре 1400oС. После этого проводили перемешивание и выдержку расплава в жидком состоянии в течение 5 мин. Далее производили слив избыточного шлака, а затем остатков шлака и металла. В конце процесса извлекали металл в виде компактного слитка, предварительно разрушив шлаковую оболочку. В результате был получен слиток металла состава: Cu:Ni:Al - 1:0,9:0,2 массой 2,15 кг, и шлак массой 4 кг. Анализ металла показал наличие в нем незначительных количеств (в целом не более одного процента) Si; Fe; Mn; Mg. Проведенный анализ шлака показал отсутствие металлических включений с точностью до 0,01%.

Согласно пп.1, 3 эффективно перерабатываются отходы материалов, состоящих из металла-покрытия и оксидной основы. К таким материалам относятся: некоторые катализаторы, обычно на основе Аl2О3; керамические конденсаторы на основе ТiO2, титанатов бария, стронция или систем оксидов, например Ca(Ti0,99Zr0,01)O3 (керамика марки Т150) и ряд других материалов (см. "Технология керамики и огнеупоров", под ред. П.П. Будникова, М. - 1962 г.). Содержание металла-покрытия в таких материалах может колебаться в пределах от долей до десятка процентов, причем в составе металла-покрытия в ряде случаев используют ценные металлы.

Способ обеспечивает высокую степень извлечения металлических компонентов отходов. Предлагаемый металлургический цикл переработки более производителен, чем химический или электрохимический. При этом побочный продукт - шлаки экологически безвредны и могут найти отдельное применение, например, как строительный материал или расжжижитель при производстве стали. Описанный способ позволяет разделять компоненты отходов на основе алюминия или его сплавов с нанесенным металлом-покрытием в широком диапазоне толщин и составов металла-покрытия. Способ также позволяет перерабатывать отходы, состоящие из оксидных, в общем случае, керамических компонентов и металла-покрытия, обеспечивая его выделение в удобном для дальнейшей переработке виде.

Формула изобретения

1. Способ разделения многокомпонентного материала, содержащего металлические компоненты, включающий его нагревание и выплавку, отличающийся тем, что выплавку многокомпонентного материала производят в графитовом тигле с добавлением шлакообразующего флюса на основе фторида натрия в количестве, обеспечивающем вязкость шлака менее, чем 4 мПас при температуре процесса в пределах 1000 - 1800oС, после чего проводят перемешивание и выдержку расплава в жидком состоянии в течение времени, достаточном для разделения шлаковой и металлической фаз, а затем производят выпуск полученного шлака и металла, причем их разделение производят механически после затвердевания.

2. Способ по п. 1, отличающийся тем, что многокомпонентный материал, состоящий преимущественно из металла-покрытия, оксидов алюминия и других металлов, а также не окисленного металла-основы, получают из многослойного металлического материала путем выплавки и слива низкоплавкого компонента.

3. Способ по п.1, отличающийся тем, что в качестве многокомпонентного материала используют материал, содержащий металл-покрытие и, преимущественно, оксиды других металлов.

4. Способ по любому из пп.1-3, отличающийся тем, что вместе со шлакообразующим флюсом добавляют металл-растворитель массой, большей массы металла-покрытия.



 

Похожие патенты:

Изобретение относится к переработке отходов в виде металлической стружки

Изобретение относится к области производства редких металлов и, в частности, переработки отходов полупроводниковых соединений на основе галлия
Изобретение относится к способам растворения циркония, находящегося во вторичном сырье, и может быть использовано для извлечения циркония из конструкционных материалов, а также отходов металлургических и механических операций производства циркония, его сплавов и изделий

Изобретение относится к цветной металлургии, в частности к производству алюминия и глинозема, и может быть использовано при утилизации отработанной угольной футеровки алюминиевых электролизеров

Изобретение относится к цветной металлургии, к способам получения медно-фосфористой лигатуры, используемой для производства сплавов, раскислителей и припоев
Изобретение относится к способам извлечения благородных металлов из отработанных катализаторов, а также к электрохимическим процессам с псевдосжиженным или фиксированным слоем

Изобретение относится к способам электролитического извлечения золота из вторичного сырья, в том числе с поверхности сплавов на основе бериллия

Изобретение относится к гидрометаллургии, в частности к выщелачиванию содержащего никель, кобальт, молибден, ванадий материала с неорганической основой, и может быть использован для переработки отработанных катализаторов

Изобретение относится к металлургии, в частности гидрометаллургии ванадия, и может быть использовано для переработки и обезвреживания жидких ванадийсодержащих отходов производства - сточных вод, образующихся при получении различных товарных соединений ванадия: NH4VO3, V2О5 и др

Изобретение относится к химической технологии, а именно к способам извлечения шламов, содержащих платиноиды, с поверхностей аппаратов химико-технологических установок, например, аппаратов, расположенных по ходу газа за реактором конверсии аммиака на платиноидном катализаторе, в установках по производству гидроксиламинсульфата, азотной и синильной кислот

Изобретение относится к области демеркуризации твердых ртутьсодержащих отходов, но может быть использовано и для получения ртути из ртутных руд и ртутьсодержащих материалов
Изобретение относится к металлургии редких и платиновых металлов и может быть использовано на предприятиях, перерабатывающих дезактивированные катализаторы различных производств химического и нефтехимического профиля

Изобретение относится к черной металлургии и может быть использовано для получения отливок из доменного чугуна
Изобретение относится к утилизации гранулированных шлаков и может быть использовано для извлечения никеля, кобальта и других ценных компонентов из отвальных гранулированных шлаков никелевого производства, а также в производстве строительных материалов
Изобретение относится к черной и цветной металлургии, а именно к области переработки шлаков и может быть использовано для извлечения металлов и песка из шлаков
Изобретение относится к черной и цветной металлургии, а именно к области переработки шлаков и может быть использовано для извлечения металлов и песка из шлаков

Изобретение относится к цветной металлургии, в частности к извлечению свинца из вторичного сырья, и может быть использовано при переработке отслуживших ресурс аккумуляторных батарей
Наверх