Скважинный расходомер

 

Изобретение относится к исследованию скважин и может быть использовано при построении профиля притока или поглощения в скважинах с малой производительностью. Задачей изобретения является снижение нижнего предела измерения. Устройство содержит скважинный прибор с обоймой, установленной на опорах в его корпусе и вращающейся относительно корпуса с помощью электродвигателя с редуктором, выходной вал которого имеет кинематическую связь с обоймой с помощью магнитной муфты, и вторичный прибор, связанный со скважинным прибором через каротажный кабель и снабженный устройством для реверсирования и регулирования скорости вращения электродвигателя с редуктором. Внутри обоймы также на опорах посажен турбинный датчик расхода, выше и ниже которого находятся струенаправляющие решетки, выполненные в виде винтообразных лопастей. Скважинный прибор снабжен герконным датчиком частоты вращения обоймы и двумя датчиками-герконами для определения частоты и направления вращения турбинки. 4 ил.

Изобретение относится к аппаратуре для геофизических и гидродинамических исследований скважин и может быть использовано в нефтяной промышленности при исследовании действующих скважин.

Известен расходомер для исследования действующих скважин [1], содержащий пакер для перекрытия колонны обсадных труб и направления потока жидкости в измерительный канал прибора, где установлен турбинный датчик скорости потока.

Недостатками данного расходомера являются сложность и низкая надежность пакера и погрешности измерения от перепада давления, создаваемого пакером.

Наиболее близким к предлагаемому является расходомер [2], турбинный датчик которого посажен на опорах в обойму, установленную также на опорах в корпус прибора. Обойма через магнитную муфту имеет кинематическую связь с выходным валом электродвигателя с редуктором и с помощью последнего приводится во вращательное движение. Таким образом, в рабочем состоянии обойма вращается на своих опорах относительно корпуса прибора и турбинного датчика. Этим трение покоя в опорах турбинного датчика заменяется трением движения, что в свою очередь повышает чувствительность прибора.

Однако нижний предел измерения данного расходомера не удовлетворяет требованиям, предъявляемым к прибору при исследовании добывающих скважин с низкодебитными нижними пластами и пропластками, т.к. с помощью этого расходомера невозможно построить детальный профиль притока в скважину в интервалах нижних продуктивных горизонтов. Целью изобретения является снижение нижнего предела измерения расходомера.

Расходомер работает следующим образом. Скважинный прибор с помощью кабельного наконечника присоединяют к каротажному кабелю, намотанному на барабан лебедки каротажного подьемника (на чертежах не показано). К другому концу кабеля через каротажный коллектор (токосъемник) лебедки подъемника подключают вторичный прибор расходомера. Скважинный прибор расходомера с помощью каротажного подъемника спускают в скважину до глубины ниже нижней границы продуктивных пластов (в зумф). Подачей с помощью вторичного прибора регулируемого напряжения определенной полярности на электродвигатель обеспечивают в зоне турбинки движение жидкости в направлении восходящего потока и добиваются устойчивого равномерного вращения турбинного датчика. При этом обойма 4 (фиг. 1) со своими направляющими решетками 14 и 15 (фиг.2 и 3), имеющими форму винтообразных лопастей, вращается на своих опорах 2, 3 относительно корпуса 1 скважинного прибора.

Это обеспечивает, наряду со снижением трения в опорах 12, 13 турбинного датчика 8, локальное движение жидкости вверх в измерительном канале А глубинного прибора. Поток жидкости попадает в измерительный канал А через окна В, а уходит из него через окна Г, выполненные в обойме 4 и корпусе 1. Таким образом, рабочий диапазон расходомера сдвигается в сторону высоких частот вращения турбинки, где более высокая и стабильная чувствительность турбинного датчика. Далее путем протяжки прибора вверх и вниз в продуктивных интервалах с остановками в отдельных наиболее информативных точках (кровля и подошва пласта, промежутки между пластами и т.п.) строят профиль притока жидкости в скважину.

Расходомер может быть использован для построения профилей поглощения нагнетательных скважин малой производительности.

Возможность искусственного создания локального потока жидкости в зоне турбинного датчика может быть успешно использована для решения и других промыслово-геологических задач, например для определения перетоков жидкости из одного пласта в другой путем создания локальных потоков в разные стороны.

Поставленная цель достигается тем, что в расходомере, содержащем скважинный прибор с турбинным датчиком расхода, посаженным на опорах в обойму с находящимися выше и ниже турбинки струенаправляющими решетками, установленную также на опорах в корпусе прибора и вращающуюся относительно корпуса с помощью электродвигателя с редуктором, выходной вал которого имеет кинематическую связь с обоймой с помощью магнитной муфты, и вторичный прибор, связанный со скважинным прибором через каротажный кабель и снабженный устройством для реверсирования и регулирования скорости вращения электродвигателя с редуктором, струенаправляющие решетки выполнены в виде винтообразных лопастей, а скважинный прибор снабжен герконным датчиком частоты вращения обоймы и двумя датчиками-герконами для определения частоты и направления вращения турбинки.

Данное техническое решение обеспечивает снижение нижнего предела измерения расходомера путем создания дополнительной скорости жидкости через турбинку за счет вращения направляющих решеток, установленных в обойме выше и ниже турбинки и имеющих винтообразные лопасти. Таким образом, решетки играют роль осевых насосов.

На фиг.1 показан глубинный прибор расходомера, а на фиг.2, 3 и 4 - соответственно сечения А-А, Б-Б и В-В. Расходомер содержит корпус 1 из немагнитного материала с опорами 2, 3 под обойму 4, выполненную также из немагнитного материала; электродвигатель с редуктором 5, который с помощью полумуфт 6, 7 магнитной муфты имеет кинематическую связь с обоймой 4 и через каротажный кабель имеет электрическую связь со вторичным прибором (на чертежах не показаны); турбинку 8 с постоянным магнитом 9, имеющим магнитную связь с герконами 10А и 10Б (магнитоуправляемые контакты), для преобразования числа оборотов и направления вращения турбинки в электрический сигнал, посылаемый через провода 11 и каротажный кабель на вторичный прибор; опоры 12, 13, выполненные в обойме 4, для установки турбинки 8; верхняя 15 и нижняя 14 направляющие решетки с винтообразными лопастями, установленные жестко в обойме 4.

Угловое смещение (несимметричное расположение) герконов 10А и 10Б друг относительно друга позволяет определить направление вращения турбинки. А для определения частоты вращения обоймы 4, а следовательно, скорости дополнительно созданного локального потока жидкости в области турбинки, скважинный прибор снабжен герконным датчиком 10В, срабатывающим от магнитной муфты (полумуфты) 7.

Таким образом, для построения профиля притока (поглощения) жидкости в скважину используется следующая информация: а) число оборотов и направление вращения турбинного датчика расхода 8 (последовательность электрических импульсов, сформированных с помощью герконов 10А и 10Б); б) число оборотов (электрические импульсы, сформированные герконом 10В) и направление (по полярности подаваемого для питания электродвигателя с редуктором, находящегося в скважинном приборе, напряжения) обоймы 4.

Источники информации 1. Габдуллин Т.Г. Оперативное исследование скважин. М.: Недра, 1981 г.

2. Авторское свидетельство СССР 1329331, кл. G 01 F 15/18.

Формула изобретения

Скважинный расходомер, содержащий скважинный прибор с турбинным датчиком расхода, посаженным на опорах в обойму с находящимися выше и ниже турбинки струенаправляющими решетками, установленную также на опорах в корпусе прибора и вращающуюся относительно корпуса с помощью электродвигателя с редуктором, выходной вал которого имеет кинематическую связь с обоймой с помощью магнитной муфты, и вторичный прибор, связанный со скважинным прибором через каротажный кабель и снабженный устройством для реверсирования и регулирования скорости вращения электродвигателя с редуктором, отличающийся тем, что струенаправляющие решетки выполнены в виде винтообразных лопастей, а скважинный прибор снабжен герконным датчиком частоты вращения обоймы и двумя датчиками-герконами для определения частоты и направления вращения турбинки.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4



 

Похожие патенты:

Изобретение относится к технике измерения массового расхода потоков жидкости или газа и может быть использовано во всех отраслях промышленности для учета и точного дозирования различных жидких сред

Изобретение относится к области добычи нефти и может быть использовано для измерения количества закачиваемой центробежными насосами воды в нефтяные пласты

Изобретение относится к устройствам, предназначенным для измерения объема (расхода) газожидкостной среды, преимущественно газа, протекающего по трубопроводам и поступающего потребителю под относительно низким давлением (от 20 мм вод

Изобретение относится к приборостроению и автоматике и может быть использовано для увеличения чувствительности генераторных первичных преобразователей-магнитоиндукционных датчиков частоты вращения, крутящего момента, расхода и т.д

Изобретение относится к приборостроению и предназначено для измерения расхода топлива в весовых единицах, в частности для измерения расхода топлива на летательных аппаратах

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано в других отраслях народного хозяйства

Изобретение относится к нефтедобывающей промышленности и может быть использовано для измерения дебита скважин

Изобретение относится к области геофизических исследований и может быть использовано при определении технического состояния скважин и путей распространения составов методом радиоактивного каротажа с использованием меченых веществ

Изобретение относится к горной промышленности и может быть использовано при строительстве эксплуатационных скважин, в том числе горизонтальных

Изобретение относится к устройствам, используемым при измерении дебита нефти в нефтедобывающей промышленности

Изобретение относится к средствам измерения и может быть использовано в нефтяной, газовой, нефтехимической и других отраслях промышленности для измерения расхода многофазной среды, состоящей из жидкости и газа

Изобретение относится к области средств измерения и может быть использовано в нефтяной, газовой, нефтехимической и других отраслях промышленности для измерения расхода многофазной среды, состоящей из жидкости и газа

Изобретение относится к нефтяной промышленности и может быть использовано для определения дебита жидкости, газа и нефти в продукции, добываемой из нефтяной скважины

Изобретение относится к геофизическим исследованиям действующих нефтяных и газовых скважин

Изобретение относится к добыче нефти и может быть использовано при измерении количества жидкости в газожидкостных смесях

Изобретение относится к системам контроля и учета при добыче нефти
Наверх