Способ измерения количества воды, закачиваемой центробежным электронасосом в нефтяные пласты

 

На каждом трубопроводе, идущем к нагнетательной скважине, измеряют с помощью диафрагмы перепад давления и вычисляют условный расход по каждой скважине. По действительным рабочим характеристикам насоса во всем диапазоне производительности вычисляют расходный коэффициент и строят его зависимость от производительности - расходную характеристику. Измеряют активную мощность, потребляемую электродвигателем привода насоса из сети, и давление на приеме и выкиде насоса. Определяют мощность, действующую на валу насоса, и перепад давления на насосе, по которым находят расходный коэффициент. С помощью расходной характеристики по найденному значению расходного коэффициента находят объемный расход. Вычисляют поправочный расходный коэффициент по каждой нагнетательной скважине путем деления общего расхода на сумму условных расходов и определяют расход по каждой скважине путем умножения условных расходов на поправочный расходный коэффициент. Изобретение обеспечивает повышение точности и упрощение процесса измерения. 5 ил., 1 табл.

Изобретение относится к области добычи нефти и может быть использовано для измерения количества закачиваемой центробежными насосами воды в нефтяные пласты.

Известны способы измерения количества накачиваемой воды в нефтяные пласты с помощью счетчиков /Справочная книга по добыче нефти / Под. ред. д-ра техн. наук Гиматудинова Ш. К. - М.: Недра, 1974, 702 с./ и АС /SU N 1312393, G 01 F 1/76, 1987/. В этих способах расходомеры устанавливаются в потоке измеряемой жидкости.

Решаемая задача - повышение точности и упрощение процесса измерения количества накачиваемой центробежными электронасосами воды в нефтяные пласты.

Отличие от известных способов измерения количества воды, закачиваемой центробежным электронасосом в нефтяные пласты, состоит в том, что на каждом трубопроводе, идущем к скважине, измеряют с помощью установленных на трубопроводах однотипных диафрагм перепад давления и вычисляют условный расход по каждой нагнетательной скважине путем извлечения корня квадратного из перепада давления, и по действительным рабочим характеристикам насоса во всем диапазоне производительности вычисляют расходный коэффициент путем вычитания из результата деления мощности на валу насоса на развиваемое им давление при данной производительности результата деления мощности на валу насоса на создаваемое им давление при нулевой производительности, взятого в начале рабочей характеристики насоса, и строят зависимость расходного коэффициента от производительности - расходную характеристику, замеряют активную мощность, потребляемую электродвигателем привода насоса из сети, измеряют давление на приеме и выкиде насоса, определяют мощность, действующую на валу насоса, путем умножения измеренной мощности на соответствующий КПД, взятый из характеристики электродвигателя в зависимости от действующего рабочего тока, и умножают на эксплуатационный коэффициент полезного действия насосной установки, определяют перепад давления на насосе путем вычитания из действующего давления на выкиде насоса давления, действующего на приеме насоса с учетом его знака, находят расходный коэффициент путем вычитания из результата деления найденного значения мощности на валу насоса на перепад давления на нем в текущий момент значения результата деления мощности на валу насоса на перепад давления на нем при нулевой подаче в начале рабочей характеристики насоса и по найденному значению расходного коэффициента, по расходной характеристике находят объемный расход, вычисляют поправочный расходный коэффициент по каждой нагнетательной скважине, для чего суммируют полученные значения условных расходов по скважинам, путем деления общего расхода на сумму условных расходов и определяют расход по каждой нагнетательной скважине путем умножения условных расходов на поправочный коэффициент.

Доказательство существенных отличительных признаков предполагаемого способа измерения количества закачиваемой центробежными электронасосами воды в нефтяные пласты производится только по сравнению с указанными выше.

На фиг. 1, 2 даны паспортные характеристики насосов и соответствующая расходная характеристика соответственно при различных количествах рабочих ступеней и плотности перекачиваемой жидкости.

На фиг. 3 - расходная характеристика погружного электронасоса ЭЦНМ5Ф-500-800.

На фиг. 4 дана типовая схема системы для закачки воды в нагнетательные скважины.

На фиг. 5 даны алгоритмы, по которым производится измерение количества жидкости, закачиваемой в нефтяные пласты.

Повышение эффективности регулирования процесса разработки нефтяного месторождения на сегодня является одной из главнейших задач, реализация которой позволит не допустить резкого обводнения добываемой жидкости и повысить нефтяную отдачу пластов. В глобальном плане это сбережение природных ресурсов и огромных государственных средств. Важнейшей задачей является регулирование пластового давления при сохранении балансов количества добытой жидкости из пласта и количества закаченной в него воды. Для закачки пластовых и поверхностных вод через нагнетательные скважины повсеместно применяются центробежные электронасосы. Так, на насосных станциях первого и второго подъемов, а также на кустовых насосных станциях используются центробежные электронасосы типа ЦНС, а на подземных кустовых насосных станциях применяются установки погружных центробежных электронасосов типа У2ЭЦНП14-1000-1200. Контроль производительности этих насосов с целью определения расхода воды, идущей на заводнение, а также анализа производительности при настройке и эксплуатации является на сегодня актуальной задачей. Использование для этих целей существующих способов измерения производительности и, в частности, способа, основанного на переменном перепаде давления, встречает значительные трудности при эксплуатации соответствующих технических средств из-за их низкой надежности в работе и необходимости организации для вторичных устройств индивидуальных измерительных пунктов в полевых условиях.

В связи с этим они не могут удовлетворить в полной мере растущие запросы практики по информационному обеспечению процесса управления нефтяным пластом.

Способ измерения производительности центробежных электронасосов на насосных станциях и количества закачиваемой воды по каждой скважине основан на анализе активной мощности, потребляемой электродвигателем приводов насосов из сети, и давления, развиваемого насосами, а также на анализе соотношений перепадов давлений на диафрагмах, находящихся на магистральных участках сети и у скважин с использованием поправочных коэффициентов, которые позволяют использовать однотипные диафрагмы, что упрощает их эксплуатацию. Измерение производительности центробежных электронасосов производится на основе анализа их энергетических параметров. Основными параметрами центробежного электронасоса являются подача Q м3 за определенное время и развиваемый напор H в м вод. столба. Напор и подача - величины взаимосвязанные: чем выше развиваемый насосом напор, тем ниже его производительность. Другим важнейшим параметром является мощность, действующая на валу насоса, которая также находится в определенной зависимости от подачи насоса. Типичные зависимости напора от подачи Н-Q и мощности от подачи N-Q для насосных установок ЦНС при различном количестве рабочих ступеней даны на фиг. 1, а на фиг. 2 для насосов У2ЭЦНП14-1000-1200 в зависимости от плотности перекачиваемой жидкости. Поскольку все типовые характеристики сняты на воде с плотностью 1000 кг/м3, то вместо напора в метрах будем в дальнейшем пользоваться давлением в МПа, из расчета 1 МПа равен 100 метрам напора. Типовые характеристики насоса оправданы в том случае, если параметры жидкости и самого насоса соответствуют в данный момент паспортным значениям, однако гарантировать это не представляется возможным, так как жидкость, как правило, по своим свойствам отличается от жидкости, на которой были сняты типовые характеристики насоса, а параметры насоса из-за износа отдельных его частей также отличаются от паспортных значений. Поэтому использовать паспортные характеристики насоса, такие как зависимость напора от производительности H-Q и мощности от производительности N-Q, в том виде, какие они есть для измерения текущей производительности, не всегда представляется возможным.

В связи с этим предлагается иная дополнительная характеристика, которая в значительных пределах не зависит от изменения параметров насосной установки и режима ее работы. Она отражает отношение текущего значения мощности N, действующей на валу насоса, к давлению p, развиваемому насосом в зависимости от производительности насоса. Эту зависимость будем называть номинальной расходной характеристикой и обозначим ее через M-Q, а ее мгновенное значение - номинальным расходным коэффициентом, обозначив его через М, который равен или Давление p, развиваемое насосом, p = pв-pп (МПа), p = pв+pпр (МПа), (3) где N - текущее значение мощности на валу насоса, кВт; p - текущее значение давления, развиваемое насосом, МПа; pп - давление, действующее на приеме насоса, МПа; pпр - давление, действующее на приеме насоса, МПа; N0, p0 - соответственно мощность на валу насоса и развиваемое им давление при нулевой производительности, кВт и МПа, взятые из действительной номинальной расходной характеристики насоса или полученные экспериментальным путем, M0 - расходный коэффициент при закрытой задвижке на выходе насоса.

Рассмотрим, каким образом определяются величины, входящие в формулы (1, 2, 3).

Текущая мощность N на валу насоса и мощность N0 при закрытой задвижке на выходе насоса соответственно равны N = PсздK = 1,732UIcosздK (кВт), (5) N = P0здK = 1,732U0I0cos0зд0здK (кВт), (6)
где Pс, U, I, cosзд и P0, U0, I0, cos0зд0зд - соответственно активная мощность, потребляемая электродвигателем привода насоса из сети, кВт; напряжение, кВ; ток, А; коэффициент мощности и КПД электродвигателя при текущем их значении и при работе электродвигателя на закрытую задвижку на выходе насоса; K - расходный коэффициент полезного действия, который равен

где N0, p0 - соответственно мощность и давление, взятые из действительной характеристики насоса при закрытой задвижке, кВт и MПа; Nот, pот - соответственно мощность и давление, полученные при текущем измерении и при работе электродвигателя насоса на закрытую задвижку, кВт и МПа. Давления, развиваемые насосом, равны
p = pв - pп (МПа),
pот = pовт - pопт (МПа),
pо = pов - pоп (МПа),
где p, pв, pп, pот, pовт, pопт, pо, pов, pоп - соответственно давления, развиваемые насосом и действующие на выкиде и приеме насоса при текущем измерении его производительности (8), и развиваемого давления при закрытой задвижке на выкиде насоса (9), и давления, взятого из действительной рабочей характеристики насоса при его работе на закрытую задвижку (10), МПа. На фиг. 1 и фиг. 3 даны рассматриваемые выше характеристики.

При анализе расходной характеристики M-Q, например, насоса ЦНС -180 (фиг. 1), имеющего в одном случае 16 ступеней с характеристиками H16-Q и мощностной N16-Q, а в другом случае 8 рабочих ступеней соответственно с напорной H8-Q и мощностной N8-Q рабочими характеристиками, следует, что расходная характеристика одна и та же, т.е. не зависит от возможного изменения параметров насосной установки. Для примера на фиг. 2 даны характеристики насоса - напорная H-Q и мощностная N-Q при плотности жидкости, равной единице, и характеристики напорные, выраженные в давлениях p1-Q, p2-Q соответственно при повышенной плотности и при пониженной плотности перекачиваемой жидкости, равной 1,1 и 0,9, при этом типовая характеристика M-Q одна и та же. При отклонении параметров насосной установки от заданных, например при изменении скорости вращения вала насоса, номинальный расходный коэффициент меняет свое значение. Поэтому после монтажа насосной установки и ее пробного пуска снимаются эксплуатационные характеристики насосной установки N-Q и H-Q и по формуле (1) вычисляется эксплуатационная расходная характеристика M-Q и расходный коэффициент M0, как это показано на фиг. 3 для насосной установки ЭЦНМ5А. В дальнейшем характеристика насосной установки не снимается, а периодически определяется расходный коэффициент полезного действия К при закрытой задвижке на выкиде насоса в соответствии с формулой (7). Расходная характеристика M-Q для каждого типа насосной установки индивидуальна и может быть описана уравнением определенного вида. Так расчетная производительность Q насосной установки, характеристики которой даны на фиг. 3, может быть определена по формуле

где M - расходный коэффициент; A и B - постоянные для данной насосной установки коэффициенты.

Рассмотрим пример расчета производительности насосной установки типа ЭЦНМ5А - 500-800, расходная характеристика которой M-Q представлена на фиг. 3.

Экспериментальные данные по трем измерениям.

Линейные напряжения электродвигателей, U кВ (см. таблицу).

Расчет для первого эксперимента:
N =1,732UIcos эдK,
,
N = 1,7321,95400,860,841 = 98,174 кВт,
P = pв - pп, p = 4 - 0,48 = 3,52 МПа,

,

Данные расчета по второму эксперименту - Q = 624,5 м3/сут.

Данные расчета по третьему эксперименту - Q = 506,98 м3/сут.

Разница в измерении расхода экспериментальным и расчетным методами составила - 2,0%, 0,008%, 0,006%.

Полученные данные подтверждают достаточно высокую точность предлагаемого экспериментально-расчетного метода измерения производительности центробежных электронасосов. Таким образом, сама насосная установка является одновременно и прекрасным расходомером, в котором реализуется физический процесс, аналогичный обычным счетчикам количества жидкости. При этом, если в счетчике поток жидкости вращает турбинку, то в насосе рабочее колесо создает поток. Таким образом создаются невиданные возможности в использовании насосной установки как объемного, так и массового расходомера, которые крайне необходимы для нефтяной промышленности. Рассмотрим возможности использования рассмотренного метода измерения расхода в современных системах для закачки воды в нефтяной пласт. Эти системы представляют из себя сложные инженерные сооружения с насосными станциями большой производительности и разветвленной системой трубопроводов, которые в основном работают без постоянного присутствия обслуживающего персонала. Среди большого количества измерительных систем, обслуживающих эти инженерные сооружения, наиболее важными являются системы для измерения и учета количества закачиваемой жидкости в пласт. На фиг. 4 дана типовая схема системы для закачки воды в нагнетательные скважины с индивидуальным насосом. Как следует из этой схемы, вода насосом P подается на водораспределительный пункт ВРП, где она распределяется по трубопроводам ТР1, ТР2, ТРn, идущим к нагнетательным скважинам НО1, НО2, НОn. Для измерения количества жидкости, подаваемой в нагнетательные скважины, предлагается измерить производительность Q насоса H и перепады давлений p1, p2, pn и с помощью диафрагм Д1, Д2, Дn на каждом трубопроводе, идущим к нагнетательной скважине, и, зная общую производительность Q, по соотношению корней квадратных из перепадов давлений определять количество жидкости Q1, Q2, Qn, закачиваемой в каждую из скважин. Реализация этого способа осуществляется в соответствии с алгоритмом, показанным на фиг. 4, следующим образом.

По формуле, аналогичной (11), определяется производительность насосной установки Q при расчетных коэффициентах A и B

Измеряются перепады давлений на диафрагмах p1, p2, pn.

Вычисляются условные расходы по каждому трубопроводу, которые пропорциональны корню квадратному из перепадов давлений вычисляется суммарный условный расход Qу по всем трубопроводам, идущим к нагнетательным скважинам, Qу = Qу1 + Qу2 + Qуn.

Вычисляется поправочный расходный коэффициент Kу путем деления расхода, подаваемого насосом, на суммарный условный расход .

Вычисляют количество воды, закачиваемой в нагнетательные скважины, Q1 = Qу1Kу, Q2 = Qу2Kу, Qn = QетKу.

Для насосной установки, рассмотренной на фиг. 4, при подаче воды на пять нагнетательных скважин экспериментально определены расходы по каждой из них: p1 = 0,1, p2 = 0,12, p3 = 0,08, p4 = 0,16, p5 = 0,2.

Условные расходы равны корню квадратному из перепадов давления
= 0,316,
= 0,345,
= 0,283,

.

Суммарный условный расход
Qу = Qу1 + Qу2 + Qу3 + Qу4 +Qу5,
Qу = 0,316 + 0,345 + 0,283 + 0,4 + 0,447 = 1,79.

Поправочный расходный коэффициент
.

Расход по каждой скважине, м3/сут:
Q1 = 282,5 х 0,316 = 89,257,
Q2 = 282,5 х 0,345 = 97,46,
Q3 = 282,5 х 0,283 = 79,94,
Q4 = 282,5 x 0,4 = 113,
Q5 = 282,5 x 0,447 = 126,33.

Реализация указанного способа может быть проведена как с помощью переносного прибора, так и с помощью автоматизированной информационной системы, структурная схема которой показана на фиг. 3. В ней датчики ДП и ДВ для измерения перепада давления на насосе H, дифманометры Д1, Д2, Дn на трубопроводных линиях, а также статический преобразователь мощности СПМ для измерения активной мощности, потребляемой электродвигателем привода насоса, устанавливаются стационарно и подключаются к ЭВМ, находящейся на информационном пункте данного района нефтепромысла, связанного с единой нефтепромысловой сетью СТ.


Формула изобретения

Способ измерения количества воды, закачиваемой центробежным электронасосом в нефтяные пласты, отличающийся тем, что на каждом трубопроводе, идущем к скважине, измеряют с помощью установленных на трубопроводах однотипных диафрагм перепад давления и вычисляют условный расход по каждой нагнетательной скважине путем извлечения корня квадратного из перепада давления, и по действительным рабочим характеристикам насоса во всем диапазоне производительности вычисляют расходный коэффициент путем вычитания из результата деления мощности на валу насоса на развиваемое им давление при данной производительности результата деления мощности на валу насоса на создаваемое им давление при нулевой производительности, взятого в начале рабочей характеристики насоса, и строят зависимость расходного коэффициента от производительности - расходную характеристику, измеряют активную мощность, потребляемую электродвигателем привода насоса из сети, измеряют давления на приеме и выкиде насоса, определяют мощность, действующую на валу насоса, путем умножения измеренной мощности на соответствующий КПД, взятый из характеристики электродвигателя в зависимости от действующего рабочего тока, и умножают на эксплуатационный КПД насосной установки, определяют перепад давления на насосе путем вычитания из действующего давления на выкиде насоса давления, действующего на приеме насоса с учетом его знака, находят расходный коэффициент путем вычитания из результата деления найденного значения мощности на валу насоса на перепад давления на нем в текущий момент значения результата деления мощности на валу насоса на перепад давления на нем при нулевой подаче в начале рабочей характеристики насоса и по найденному значению расходного коэффициента, по расходной характеристике находят объемный расход, вычисляют поправочный расходный коэффициент по каждой нагнетательной скважине, для чего суммируют полученные значения условных расходов по скважинам, путем деления общего расхода на сумму условных расходов и определяют расход по каждой нагнетательной скважине путем умножения условных расходов на поправочный коэффициент.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6



 

Похожие патенты:

Изобретение относится к устройствам, предназначенным для измерения объема (расхода) газожидкостной среды, преимущественно газа, протекающего по трубопроводам и поступающего потребителю под относительно низким давлением (от 20 мм вод

Изобретение относится к приборостроению и автоматике и может быть использовано для увеличения чувствительности генераторных первичных преобразователей-магнитоиндукционных датчиков частоты вращения, крутящего момента, расхода и т.д

Изобретение относится к приборостроению и предназначено для измерения расхода топлива в весовых единицах, в частности для измерения расхода топлива на летательных аппаратах

Изобретение относится к области приборостроения, а именно к области измерения скорости текучих сред, и может быть использовано, в частности, для измерения расхода газа в нескольких автономных каналах

Изобретение относится к устройствам преобразования выходного сигнала датчика расхода вихревого типа в качественный информационный сигнал для измерительного прибора расходомера при многофакторном отрицательном воздействии на датчик в реальных условиях его эксплуатации

Изобретение относится к весоизмерительной технике, а именно к устройствам для дозирования сыпучих материалов

Изобретение относится к нефтяной промышленности для определения коэффициентов гидропроводности, проницаемости, пьезопроводности и продуктивности совместно эксплуатируемых продуктивных пластов и может быть использовано для более точного прогнозирования указанных параметров и пластовых давлений
Наверх