Способ получения высокомарочных водостойких бетонов

 

Изобретение относится к строительным материалам, а именно к изготовлению бетонов для гидротехнических объектов и гидроизоляции подземных сооружений. В способе получения высокомарочных водостойких бетонов, включающем перемешивание цемента, песка, гравия, воды и микродобавки бентонитовой глины, в качестве микродобавки бентонитовой глины используют бентонитовую глину 14 горизонта Восточного фланга Таганского месторождения Восточного Казахстана с содержанием природного минерала кальций-магниевого монтмориллонита 95 отн.%, которую заранее готовят - сушат при 160-200oС, дробят до размера частиц менее 0,1 мм и содержания фракции менее 0,074 мм - более 70 отн.%, перемешивают с водой и выдерживают в течение 12 ч. Указанную микродобавку вводят в количестве 0,8-1,5% от веса цемента в виде бентонито-водной суспензии в отношении 1: 10. Технический результат - получение водонепроницаемых бетонов с высокой прочностью. 5 табл., 11 ил.

Изобретение относится к производству строительных материалов и может быть использовано при строительстве гидротехнических объектов и гидроизоляции подземных сооружений.

Как известно, по прочности на сжатие в возрасте 180 суток гидротехнический бетон делится на марки: 75, 100, 150, 200, 250, 300, 400 и 500.

По водонепроницаемости - в этом же возрасте - на марки: W-2, W-4, W-6, W-8, W-10, W-12, W-14 и W-16 [1].

На практике широко применяется метод увеличения прочности и водонепроницаемости бетона за счет введения в него микродобавок концентратов сульфитно-спиртовой барды (ССБ и СДБ) и их производных [2].

Микродобавки сульфитно-спиртовой барды пригодны только для бетонов марок не выше W-12, однако при длительной эксплуатации и повышении надежности многие гидротехнические сооружения требуют применения бетонов, обладающих маркой выше W-12.

На практике с целью улучшения характеристик бетонов, в них вводят микродобавки - бентонитовые глины. Причем используют щелочноземельные глины, состоящие из кальций-магниевого монтмориллонита. Щелочные, натриевые бентониты не годятся при введении в состав бетонов при требованиях по морозостойкости.

Заявителю известен ближайший аналог (прототип) заявляемого изобретения, как наиболее близкий ему по совокупности существенных признаков. Данный аналог представляет собой способ получения высокомарочных водостойких бетонов, включающий перемешивание цемента, песка, гравия и воды с микродобавкой щелочноземельных бентонитов Биклянского месторождения [3].

По фракционному составу, после диспергации в водной среде, бентониты данного месторождения характеризуются следующими параметрами (табл.1). Доказано, что, чем тоньше дисперсионный состав бентонитов, тем выше показатели по водонепроницаемости, морозостойкости, пластичности и прочности. Этому способствует и минеральный состав, т.е., чем больше содержание кальций-магниевого монтмориллонита в бентоните, тем выше качество бетона.

Недостатками известного способа являются: - относительно невысокое содержание фракции <0,074 мм; - содержание в бентоните минерала кальций-магниевый монтмориллонит менее 85 отн.%; - относительно высокое содержание других минералов (каолинита, кварца, карбонатных разностей); - бетонный раствор в результате получается грубым и плохо перемешивается. Необходимо вносить большое количество добавки, а бетон получается с более низкими прочностными и водонепроницаемыми свойствами.

Задачей, на решение которой направлено изобретение, является разработка способа получения водонепроницаемых бетонов с высокими прочностными свойствами.

Техническим результатом изобретения является повышение долговечности гидротехнических объектов и улучшение гидроизоляционных свойств подземных сооружений.

Упомянутая задача решается таким образом, что в способе получения высокомарочных водостойких бетонов, включающем перемешивание цемента, песка, гравия, воды и микродобавки бентонитовой глины, в качестве микродобавки бентонитовой глины используют бентонитовую глину 14 горизонта Восточного фланга Таганского месторождения Восточного Казахстана с содержанием природного минерала кальций-магниевого монтмориллонита 95 отн.%, которую заранее готовят - сушат при температуре 160-200oС, дробят до размера частиц менее 0,1 мм и содержания фракции менее 0,074 мм - более 70 отн.%, перемешивают с водой и выдерживают в течение 12 часов, причем указанную микродобавку вводят в количестве 0,8-1,5% от веса цемента в виде бентонито-водной суспензии в отношении 1:10.

Заранее готовится микродобавка, получаемая из щелочноземельных бентонитов 14 горизонта Восточного фланга Таганского месторождения, которая сушится при температуре 160-200oС в сушильных печах до влажности около 10 отн.%. Затем она дробится и истирается до размера частиц менее 0,1 мм, причем фракция менее 0,074 мм составляет более 70 отн.%, после чего готовится водная суспензия в отношении 1:10, которая тщательно перемешивается и выдерживается в течение 12 часов. Готовая бентонито-водная суспензия (гель) подается на окончательное перемешивание бетонной смеси.

Бентонитовая глина 14 горизонта Таганского месторождения состоит на 95% из кальций-магниевого монтмориллонита, после диспергации в водной среде она характеризуется фракционным составом, приведенным в табл. 2.

Немаловажное значение имеет взаимодействие воды и бентонита, получаемая суспензия характеризуется очень большим количеством частичек монтмориллонита. Средневзвешенные значения содержаний фракций монтмориллонита Биклянского и 14 горизонта Таганского месторождений в водной среде приведены в табл. 3.

Для получения экспериментальных данных отбирались разные типы бентонитов Таганского месторождения с получением образцов бетона. При этом свежеотформованные образцы подвергались термовлажностной обработке по режиму 3+3+9+1=16 часов с последующей выдержкой в нормальных условиях среда - вода.

Проведение эксперимента по получению бетонов с водонепроницаемыми свойствами путем введения в бетон марки 400 бентонитов с разных горизонтов Таганского месторождения показали следующие результаты (табл. 4).

Как видно из табл. 5, наиболее высокий коэффициент водонепроницаемости получен при введении 1 отн.% бентонита 14 горизонта (Восточный фланг) с содержанием кальций-магниевого монтмориллонита 95 отн.%. Прочность через 28 суток составила 535 кг/см2, коэффициент водонепроницаемости - 14. При меньшем содержании и более 1,5 отн.% показатели бетона по водонепроницаемости и прочности становятся нестабильными.

Пример Для приготовления бетона из расчета расхода материалов на 1 кубометр в бетономешалку загружают 550 кг цемента, 1180 кг гравия, 510 кг песка, все перемешивают и разводят водой.

Отдельно подготавливают микродобавку, для чего бентонит 14 горизонта Восточного фланга Таганского месторождения Восточного Казахстана, состоящий на 95 отн.% из кальций-магниевого монтмориллонита, в количестве 55 кг сушат в печи при температуре 190oС, дробят и истирают до получения фракции менее 0,1 мм (предпочтительно 0,074 мм), заливают водой в соотношении 1:10 (Т:Ж), тщательно перемешивают и выдерживают в течение 12 часов для лучшей диспергации.

Подготовленная таким образом микродобавка добавляется в бетономешалку на приготовление бетона.

Проведенные опыты (результаты сведены в табл. 5) хорошо иллюстрируются на графиках линейной зависимостью прочности и водонепроницаемости бетонов от сроков твердения при добавлении микродобавок бентонитов Таганского месторождения с разным минеральным составом (фиг.1-11). Как видно из графиков, водонепроницаемость бетонов со временем растет и может достигать после 56 дней - 16, а через 150 дней - 18W. Для сравнения прочностных и водонепроницаемых свойств бетонов, полученных при добавлении микродобавок щелочноземельных бентонитов Таганского и Биклянского месторождений, приведены количественные характеристики (табл. 5).

ИСТОЧНИКИ ИНФОРМАЦИИ 1. Баженов Ю. М. Способы определения состава бетона различных видов. Учеб. пособие для ВУЗов. - М.: Стройиздат, 1975, 268 с.

2. Баженов Ю.М. Способы определения состава бетонов различных видов. - М.: Стройиздат, 1975. - с.75.

3. Кирсанов Н.В., Толмачев В.К. Влияние микродобавок кальциевых и магниевых бентонитов на свойства гидротехнических бетонов: Труды. //Бентонитовые глины Поволжья. /Казанский геологический институт, вып.25. - Казань, 1970. - С.148-158 (прототип).

Формула изобретения

Способ получения высокомарочных водостойких бетонов, включающий перемешивание цемента, песка, гравия, воды и микродобавки бентонитовой глины, отличающийся тем, что в качестве микродобавки бентонитовой глины используют бентонитовую глину 14 горизонта Восточного фланга Таганского месторождения Восточного Казахстана с содержанием природного минерала кальций-магниевого монтмориллонита -95 отн. %, которую заранее готовят - сушат при 160-200oC, дробят до размера частиц менее 0,1 мм и содержания фракции менее 0,074 мм - более 70 отн. %, перемешивают с водой и выдерживают в течение 12 ч, причем указанную микродобавку вводят в количестве 0,8-1,5% от веса цемента в виде бентонито-водной суспензии в отношении 1:10.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6, Рисунок 7, Рисунок 8, Рисунок 9, Рисунок 10, Рисунок 11, Рисунок 12, Рисунок 13



 

Похожие патенты:

Изобретение относится к строительным растворам и может быть использовано для кладочных, штукатурных и других работ при строительстве зданий и сооружений

Изобретение относится к теплоизоляционным материалам, которые могут использоваться для тепловой изоляции поверхностей в различных отраслях народного хозяйства

Изобретение относится к области строительных материалов и предназначено для использования в качестве покрытий для защитно-декоративной отделки строительных изделий из бетона, асбоцемента, цементно-стружечных плит

Изобретение относится к области производства промышленной продукции и может быть использовано для получения пенокерамики, высокоэффективного средства для теплоизоляции трубопровода различного назначения, технологического оборудования, бытовых и технических сооружений, а также в виде фасонных изделий или формируемых непосредственно на теплоизолируемой поверхности путем налива или намазывания состава

Изобретение относится к способам получения неостеклованных алюмосиликатных легких песков и может найти применение в промышленности строительных материалов в качестве добавки (взамен керамзитового или аглопоритового песка) в составе формовочных мас при изготовлении конструкционно-теплоизоляционных бетонов, а так же в качестве отощающей добавки в производстве пористой грубой керамики (кирпича, дренажных труб и др.)

Изобретение относится к области строительных материалов, а именно к технологии получения цементных, бетонных или железобетонных изделий, точнее к пластификаторам с повышенной технологичностью и доступностью компонентов

Изобретение относится к строительным материалам и может быть использовано для ускорения твердения бетонов и растворов

Изобретение относится к строительным материалам, более точно к производству комплексных добавок для регулирования свойств цементно-песчаных, бетонных смесей и бетонов, и может быть использовано для производства монолитных бетонов

Изобретение относится к строительным материалам и может быть использовано в качестве водоудерживающей добавки к вяжущему

Изобретение относится к строительным материалам и может быть использовано в качестве пластифицирующей добавки к вяжущему

Изобретение относится к получению композиционных смесей, приготавливаемых из измельченного наполнителя, минеральных вяжущих, и может быть использовано для изготовления строительных композиционных материалов путем прессования сырьевых смесей

Изобретение относится к промышленности строительных материалов и может быть использовано при изготовлении конструкций и изделий из арболита

Изобретение относится к промышленности строительных материалов, в частности к составу сырьевой смеси на основе синтетического связующего и органического наполнителя, предназначенной для получения легковесных строительных изделий и конструкций, применяемых для тепловой изоляции

Изобретение относится к получению композиционных смесей, приготавливаемых из измельченного растительного сырья, преимущественно из древесных отходов, минеральных магнезиальных вяжущих, и может быть использовано для изготовления строительных тепло- и звукоизоляционных материалов
Наверх