Способ очистки воды высоковольтным импульсным разрядом и реактор для его осуществления

 

Способ очистки воды относится к высоковольтным импульсным технологиям и может быть использован для обработки воды электрическими импульсными разрядами с целью ее очистки и обеззараживания. Технический результат заключается в получении более чистой воды при меньших энергозатратах и расширении области применения путем очистки более сложных вод по содержанию в них примесей и достигается тем, что в известном способе очистки воды путем воздействия высоковольтным импульсным разрядом согласно изобретению предварительно сформированную рабочую струю воды пропускают в газовой среде через последовательный ряд сопел-электродов, между которыми зажигают высоковольтный импульсный разряд, параметры которого удовлетворяют соотношению рtфF(Е/р), где р - давление газа между соплами, Па; tф - время формирования разряда, с; Е - напряженность электрического поля между соплами, E=U/d, U - амплитуда импульса воздействующего напряжения, В; d - расстояние между соплами, м; F - коэффициент, определяемый параметрами газовой среды. Способ реализуется в реакторе очистки воды путем воздействия высоковольтным импульсным разрядом, содержащем цилиндрический корпус с разделяющей перегородкой, генератор высоковольтных импульсов, электроды, патрубки ввода и вывода воды, согласно изобретению в корпусе соосно с одной стороны перегородки расположен генератор высоковольтных импульсов, а с другой - камера обработки воды, включающая в себя патрубок ввода воды с рабочим соплом, формирующим рабочую струю, и выходное сопло с патрубком вывода, являющимся камерой смешения воды, между которыми расположен последовательный ряд сопел-электродов, присоединенных через один к высоковольтному выходу генератора, а других - к корпусу. Технический результат - эффективные очистка и использование энергии по составляющим процесс очистки воды. 2 с.п. ф-лы, 1 ил.

Способ очистки воды относится к высоковольтным импульсным технологиям и может быть использован для обработки воды электрическимм импульсными разрядами с целью ее очистки и обеззараживания.

Известны способы очистки воды (а.с. СССР 346232, МПК С 02 В 9/00, 1970; заявка ФРГ 2311504, МПК С 02 В 3/02, 1974; а.с. СССР 389030, МПК С 02 В 5/00, 1977) электрическими импульсными разрядами, формируемыми непосредственно в обрабатываемой воде. Обобщенные сведения по эффективности и действующим факторам приведены в работе Горячев В.Л., Рутберг Ф.Г, Федюкович В.Н. Электроразрядный метод очистки воды. Состояние проблемы и перспективы. // Известия АН. Энергетика. 1998, 1. С. 40-55. Из приведенных в работе результатов следует, что энергозатраты на очистку воды электроразрядным способом превосходят энергозатраты при озонировании воды в 10-100 и более раз. В связи с чем эти способы имеют ограниченную сферу использования и применяются в специфичных областях.

Более эффективными способами обработки воды электрическими импульсными разрядами, называемыми иногда электрофотохимическими, являются способы и устройства, описанные, например, в патентах (патент СССР 1835161 A3, МПК С 02 F 1/46, от 05.11.90; патент РФ 2136599, МПК С 02 F 1/28, 7/00 от 16.12.97; патент РФ 2136601, МПК С 02 F 1/46 от 01.06.98; патент РФ 2136602, МПК С 02 F 1/46 от 01.06.98).

Наиболее близким по технической сущности из приведенной группы патентов, выбранным нами за прототип, является способ очистки воды, описанный в патенте СССР 1835161, опубл. 05.11.90, включающий очистку воды путем воздействия высоковольтным электрическим разрядом на диспергированную на капли воду и обработка ее при напряжении 1-35 кВ в газовой среде.

Данный способ и подобные ему достаточно эффективен для очистки воды с определенными свойствами, но ему присущи недостатки, характерные для многих подобных технологий, использующих озон, - это низкий выход самого озона при наличии паров воды или повышенной влажности, см., например, Кожинов В.Ф., Кожинов И. В. Озонирование воды. - М.: Стройиздат, 1973, 160 с., Самойлович В.Г., Грибалов В.И., Козлов К. В. Физическая химия барьерного разряда. - М.: МГУ, 1989. - 176 с. К этому следует добавить, что наличие в зоне обработки всего 1 об. % углеводородов, наличие которых в обрабатываемых водах невозможно исключить без принятия специальных мер, реакции образования озона могут быть практически подавлены, см., например, Камьянов В.Ф., Лебедев А.К., Сивирилов П.П. Озонолиз нефтяного сырья. - Томск: МГП "Раско",1997. - 271 с. , с.10. Так при наличии в природной воде органических соединений энергозатраты на обработку воды возросли в 3-5 раз, см., например, Яворовский Н.А., Сериков Л.В., Шиян Л.Н. Изменение химического состава подземных вод после их электроимпульсной обработки, с. 48-54. Watter-99. Материалы международной научно-технической конференции, 28-30 сентября 1999 г., Томск-Томск: Изд-во ТПУ. 1999, 272 с. Таким образом, способ-прототип обладает низкой эффективностью очистки вод, содержащих органику, поскольку низка эффективность синтеза озона и других окислителей на его основе. Поскольку разряд осуществляется в парах воды и в присутствии других, например, органических веществ.

Реактор очистки воды по приведенному способу содержит вертикальный цилиндрический корпус, размещенные в нем электроды с изоляторами и патрубки для ввода и вывода воды, которые размещены на крышке и днище соответственно, причем в верхней части корпуса расположена горизонтальная перфорированная перегородка, а электроды установлены таким образом, что отношение диаметра отверстия перегородки к расстоянию между перегородкой и электродами составляет 0,0005-0,1.

Основной задачей, на решение которой направлены заявленный способ очистки воды и реактор для его осуществления, является получение более чистой воды при меньших энергозатратах и расширение области применения путем очистки более сложных вод по содержанию в них примесей.

Единым техническим результатом, достигаемым при осуществлении заявленной группы изобретений, является более эффективное использование энергии по составляющим процесс очистки воды и воздействии на нее явлений, возникающих при этом.

Указанный технический результат достигается тем, что в известном способе очистки воды путем воздействия на нее импульсным разрядом согласно изобретению предварительно сформированную рабочую струю воды пропускают в газовой среде через последовательный ряд сопел-электродов, между которыми зажигают высоковольтный импульсный разряд, параметры которого удовлетворяют соотношению: ptф>=F(E/p), где р - давление газа между соплами, Pa; tф - время формирования разряда, с, Е=U/d - напряженность поля между соплами, В/м; U - амплитуда воздействующего напряжения, В; d - расстояние между соплами, м; F - коэффициент, определяемый параметрами среды, для воздуха 10--8<F<10.

Сопло содержит цилиндрическое отверстие и конусную часть. При подаче импульса высокого напряжения на сопла-электроды между их коническими частями загорается газовый разряд, в процессе горения которого образуется озон, возбужденные атомы и молекулы и т.д. (перечень реакций и продуктов приводится в упомянутой книге Самуйловича В.Г. и др.). При пропускании рабочей струи через сопла струя захватывает продукты разряда, т.е. рабочая струя и сопла образуют струйный откачивающий насос, с помощью которого происходит откачивание продуктов разряда и растворение их в рабочей струе. (См., например, Лямаев Б. Ф. Гидроструйные насосы и установки. - Л.: Машиностроение. Ленингр. отд-ние, 1988, 256, с. 237-243). Этим обеспечивается высокая эффективность производства озона в разряде, поскольку продукты воды в зоне разряда отсутствуют. Кроме этого, при транспортировании продуктов разряда обеспечивается меньшая степень их релаксации и диссоциации по сравнению даже с обычными способами озонирования воды, поскольку путь транспортирования мал. Таким образом, в заявленном способе реализованы условия эффективного синтеза озона и других окислителей (О, О+--) и условия их эффективного взаимодействия с водой и с ее примесями (загрязнениями). Таким образом, заданные параметры импульса обеспечивают квазиобъемную форму горения разряда или лавинную, лавинно-стримерную стадию разряда, при которой образуются оптимальные условия генерации озона. К тому же длительность формирования разряда может соответствовать длительности тока микроразряда при барьерном разряде, см., например, Королев Ю. Д., Месяц Г.А. Физика импульсного пробоя газов. - М.: Наука. Гл. ред. физ, - мат. лит. 1991. - 224 с. Здесь же приводятся сведения по определению значения F, с. 80, 81 и др. Все это в совокупности повышает выход озона.

Кроме того, при горении разряда генерируется широкий спектр излучений возбужденных молекул и атомов, лавин, а также излучения от воздействия импульса - длинноволновый спектр. Все эти излучения воздействуют на рабочую струю и на примеси, содержащиеся в ней. Все это повышает эффективность обработки. К тому же при воздействии импульса на сопла импульс воздействует также и на воду с примесями, находящуюся в рабочей струе, в которой начинают осуществляться электрохимические процессы: поляризация частиц дисперсной фазы, направленное их движение под действием поля, при котором происходит интенсивная агрегация и седиментация, см., например, Яковлев С.В., Рогов В.Н. Электрохимические методы очистки воды. - М.: Стройиздат, 1987, 300 с. Все это приводит к повышению эффективности очистки.

Указанный выше технический результат достигается тем, что в известном реакторе очистки воды путем воздействия высоковольтным импульсным разрядом, содержащем цилиндрический корпус с разделяющей перегородкой, генератор высоковольтных импульсов, электроды, патрубки ввода и вывода воды, согласно изобретению в корпусе соосно с одной стороны перегородки расположен генератор высоковольтных импульсов, а с другой - камера обработки воды, включающая в себя патрубок ввода воды с рабочим соплом, формирующим рабочую струю, и выходное сопло с патрубком вывода воды, являющимся камерой смешения воды, между которыми расположен последовательный ряд сопел-электродов, присоединенных через один к высоковольтному выходу генератора высоковольтных импульсов, а другие - к корпусу, причем другой выход генератора высоковольтных импульсов присоединен к корпусу. Размещение генератора высоковольтных импульсов в реакторе решает две задачи: исключает влияние систем передачи импульса на параметры импульса (на длительность фронта импульса) и обеспечивает охлаждение элементов генератора.

На чертеже показана конструкция реактора в сечении для обработки воды. Цилиндрический корпус 1 с разделяющей перегородкой 2 и соосно расположенный генератор высоковольтных импульсов 3 с одной стороны перегородки, содержащий: ферритовый магнитопровод 4 генератора, первичную 5 и вторичную 6 обмотки выходного импульсного трансформатора, накопительные конденсаторы 7, повышающий трансформатор с насыщающимся магнитопроводом 8 и источник исходных импульсов 9, а с другой стороны перегородки камеру обработки воды 10, включающую патрубок 11 ввода воды с рабочим соплом 12, формирующим рабочую струю 13, и выходное сопло 14 с патрубком вывода 15 воды, являющимся камерой смешения воды с продуктами разряда, между которыми расположено сопло-электрод 16 (их может быть несколько), присоединенное к выходу генератора высоковольтных импульсов (к одному из выводов вторичной обмотки импульсного трансформатора), а другой выход генератора высоковольтных импульсов присоединен к корпусу.

Работа реактора по чертежу осуществляется следующим образом. Вода из системы водоснабжения поступает в патрубок 11 ввода воды, где с помощью рабочего сопла 12 формируется рабочая струя 13, которую затем пропускают сквозь сопло-электрод 16 (количество сопел-электродов может быть и несколько), и поступает в патрубок 15 вывода воды, при этом на сопло-электрод 16 от генератора высоковольтных импульсов подаются импульсы высокого напряжении, под действием которых в камере обработки воды между соплом-электродом и другими соплами загорается газовый разряд, рабочая струя подвергается обработке полем и, захватывая продукты разряда, поступает в патрубок 15 вывода воды, где происходит окончательное смешение воды с продуктами разряда. Далее обработанная вода поступает на отстой, фильтрацию и к потребителю, т.е. по обычной технологии.

Формула изобретения

1. Способ очистки воды путем воздействия высоковольтным импульсным разрядом, отличающийся тем, что предварительно сформированную рабочую струю воды пропускают в газовой среде через последовательный ряд сопел-электродов, между которыми зажигают высоковольтный импульсный разряд, параметры которого удовлетворяют соотношению ptфF(E/p), где р - давление газа между соплами, Па; tф - время формирования разряда, с; Е - напряженность электрического поля между соплами, E=U/d; U - амплитуда импульса воздействующего напряжения, В; d - расстояние между соплами, м;
F - коэффициент, определяемый параметрами газовой среды.

2. Реактор очистки воды путем воздействия высоковольтным импульсным разрядом, содержащий цилиндрический корпус с разделяющей перегородкой, генератор высоковольтных импульсов, электроды, патрубки ввода и вывода воды, отличающийся тем, что в корпусе соосно с одной стороны перегородки расположен генератор высоковольтных импульсов, а с другой - камера обработки воды, включающая в себя патрубок ввода воды с рабочим соплом, формирующим рабочую струю, и выходное сопло с патрубком вывода, являющимся камерой смешения воды, между которыми расположен последовательный ряд сопел - электродов, присоединенных через один к высоковольтному выходу генератора, а других - к корпусу.

РИСУНКИ

Рисунок 1



 

Похожие патенты:
Изобретение относится к нефтепереработке, конкретно к способу очистки промышленных сточных вод, в частности сточных вод нефтеперерабатывающего производства

Деаэратор // 2213294

Изобретение относится к биологической очистке сточных вод и может быть использовано для очистки городских, промышленных и сельскохозяйственных сточных вод

Изобретение относится к биологической очистке сточных вод и может быть использовано для очистки городских, промышленных и сельскохозяйственных сточных вод

Изобретение относится к устройствам для очистки сточных вод биохимическим способом

Изобретение относится к устройствам для очистки сточных вод биохимическим способом

Изобретение относится к комплексной обработке бытовых и близких к ним по составу промышленных сточных вод

Изобретение относится к комплексной обработке бытовых и близких к ним по составу промышленных сточных вод
Изобретение относится к обработке воды и напитков йодом и может быть применено для йодирования напитков, изготовленных на основе питьевой воды, а также в производстве минеральной воды с соответственным составом йода

Изобретение относится к химии, а именно к химическим технологиям, и может использоваться в электронике для нанесения пленок на подложки и очистки поверхностей травлением, в химической промышленности для получения особо чистых веществ, в том числе объемных твердотельных материалов, в металлургии для получения особо чистых металлов

Изобретение относится к нефтеперерабатывающей, нефтехимической, газовой и химической отраслям промышленности и может быть использовано для утилизации газового углеводородного сырья (попутных нефтяных газов, газового конденсата и других углеводородов) путем его переработки в твердофазные продукты

Изобретение относится к технике использования электронно-лучевых технологий при радиационно-химической модификации жидких неперемешиваемых сред и может быть применено в установках для комплексного обеззараживания химически загрязненных и бытовых стоков, речной воды и в других устройствах

Изобретение относится к химической промышленности и касается установки для термоударной обработки сыпучих материалов, содержащей емкость для исходного материала, нагреватели и привод вращения, при этом она включает вертикальный вал с закрепленной на нем тарелью, установленный в корпусе, регулятор расхода материала, установленный в нижней части емкости для исходного материала, при этом привод вращает вал, имеется система охлаждения-закалки продуктов термоударной обработки, а рабочая поверхность тарели выполнена конической или с кривизной, обеспечивающей расширение кверху

Изобретение относится к способу и плазмохимическому реактору для переработки природных горючих газов, дымовых газов, выхлопных газов двигателей внутреннего сгорания от содержащихся в них нежелательных химических соединений, в частности СО и Н2S, NО2, СО2

Изобретение относится к способу получения эпоксидных соединений, которые используются в качестве промежуточных продуктов в синтезе органических соединений

Изобретение относится к технике использования электронно-лучевых технологий при радиационно-химической модификации жидких неперемешиваемых сред с размером облучаемой жидкости вдоль пучка электронов, превышающим длину полного поглощения энергии электронов макс, и может быть применено в установках для комплексного обеззараживания химически загрязненных и бытовых стоков, речной воды и в других устройствах

Изобретение относится к производству микроудобрений, используемых в сельском хозяйстве, методом электрогидравлического эффекта

Изобретение относится к области химической промышленности и касается устройства прямой термической конверсии метана в углеводороды большей молекулярной массы, содержащего установленный в металлический герметичный кожух удлиненной цилиндрической формы соосно с его осью симметрии реактор из тугоплавкого материала, рабочий объем которого включает зону предварительного нагрева, преимущественно за счет конвекционной теплопередачи от продуктов реакции, зону последующего высокотемпературного нагрева до температуры конверсии метана, зону выдержки нагретой смеси и зону закалки продуктов реакции, нагреватель, электрически связанный с источником питания, расположенным за пределами реактора, приспособления для подачи реакционной смеси и выпуска продуктов реакции, приборы для контроля и регулирования температуры нагрева и давления

Изобретение относится к области нефтепереработки, в частности к способу крекинга тяжелых нефтесодержащих фракций (мазута, отработанных моторных или смазочных масел, нефтешламов и т.п.) с использованием физических методов воздействия и установке для его осуществления
Наверх