Способ энергоснабжения скважинной аппаратуры при контроле за разработкой нефти или газа и термоэлектрический автономный источник питания


H01L35 - Термоэлектрические приборы, содержащие переход между различными материалами, т.е. приборы, основанные на эффекте Зеебека или эффекте Пельтье, с другими термоэлектрическими и термомагнитными эффектами или без них; способы и устройства для изготовления или обработки таких приборов или их частей; конструктивные элементы таких приборов (приборы, состоящие из нескольких компонентов на твердом теле, сформированных на общей подложке или внутри нее, H01L 27/00; холодильное оборудование, в котором используются электрические или магнитные эффекты, F25B 21/00; измерение температуры с использованием термоэлектрических и термомагнитных элементов G01K 7/00; получение энергии от радиоактивных источников G21H)

 

Изобретения относятся к технологии добычи нефти или газа и могут быть использованы для питания электроэнергией скважинной аппаратуры контроля состояния пласта. Способ включает подачу электрической энергии от термоэлектрического источника питания, работающего за счет разности температур на его поверхностях, и дросселирование пластовых флюидов для обеспечения указанной разницы температур. Термоэлектрический источник питания, содержащий один или несколько термоэлементов, выполняют в виде дросселя или установливают на дросселе. Дроссель устанавливают в эксплуатационной колонне. Изобретения направлены на увеличение кпд источника питания и увеличение ресурса работы аппаратуры контроля состояния пласта. 2 с.п. ф-лы, 9 ил.

Изобретение относится к технологии добычи нефти или газа и относится к источникам питания электроэнергией скважинных приборов, установленных в эксплуатационной колонне и передающих информацию в процессе добычи нефти или газа на поверхность.

Известен способ энергоснабжения скважинной аппаратуры и автономный источник питания скважинной аппаратуры в виде турбогенератора, содержащего гидротурбину, приводимую в движение потоком бурового раствора, маслозаполненный статор, залитый эпоксидным компаундом, и ротор генератора переменного тока на постоянных магнитах, расположенных на валу гидротурбины (Молчанов А.А., Сираев А.X. Скважинные автономные системы с магнитной регистрацией. - М.: Недра, 1979, с.102...103).

Недостатком такого способа и автономного источника питания является низкий ресурс, связанный с износом подшипников и уплотнений. Этот способ и устройство применяются при бурении скважин, когда возможна частая профилактика оборудования, поднимаемого на поверхность. В условиях эксплуатации скважины оборудование должно работать в скважине без профилактики несколько лет, желательно в течение всего срока действия скважины. Описанные выше способ и устройство этого не обеспечивают.

Известен также источник питания скважинной аппаратуры по свидетельству РФ на полезную модель №18211. Этот источник питания содержит химические элементы, каждый из которых выполнен в корпусе и размещен в общем корпусе, который закреплен с кольцевым зазором внутри колонны бурильных труб над скважинной аппаратурой при помощи разъема на торце и кабельного наконечника.

Недостаток - низкий ресурс работы химических элементов и неприспособленность их к условиям работы в процессе добычи нефти. Ресурс батарейных элементов весьма ограничен, и они не восстанавливаются и не перезаряжаются. Такие элементы могут использоваться при бурении скважины для питания электронных компонентов скважинной аппаратуры, но вообще непригодны для работы в скважине в условиях добычи нефти.

Известен также источник питания, работа которого основана на явлении термоэдс (явление, обратное эффекту Пельтье) (см. Физический энциклопедический словарь, М., Советская энциклопедия, 1983, с.756). Источник питания содержит термоэлементы, соединенные с потребителем электроэнергии. Термоэдс возникает в электрической цепи, состоящей из нескольких разнородных проводников, контакты между которыми имеют различную температуру.

Наиболее близким к заявленному является способ энергоснабжения скважинной аппаратуры контроля за разработкой месторождения нефти или газа, включающий подачу электрической энергии от термоэлектрического источника питания, работающего за счет разности температур на его поверхностях, возникающей, в свою очередь, в результате дросселирования пластовых флюидов. Применяемый в способе термоэлектрический источник питания содержит один или несколько термоэлементов (см. GB 2336943 A, Кл. H 01 L 35/32, опубл. 03.11.1999).

Термоэлектрический источник питания установлен в колонне труб невдалеке от дросселя, что не позволяет в полной мере использовать разность температур, создаваемую за счет дросселирования. Таким образом, недостатком прототипа является низкая мощность источника питания.

Задачей изобретения является увеличение ресурса работы аппаратуры контроля состояния пласта за счет увеличения мощности источника питания.

Решение указанной задачи достигнуто за счет того, что в способе энергоснабжения скважинной аппаратуры контроля за разработкой месторождения нефти или газа, включающем подачу электрической энергии от термоэлектрического источника питания, работающего за счет разности температур на его поверхностях, и дросселирование пластовых флюидов для обеспечения указанной разницы температур, термоэлектрический источник питания выполняют в виде дросселя или устанавливают на нем, а дроссель устанавливают в эксплуатационной колонне.

В термоэлектрическом автономном источнике питания, содержащем один или несколько термоэлементов, термоэлементы выполнены в виде дросселя или установлены на дросселе, а дроссель установлен в эксплуатационной колонне.

Сущность изобретения поясняется на фиг.1...9, где

на фиг.1 приведена схема установки,

на фиг.2 - конструкция термоэлектрического источника питания, содержащего термоэлемент, выполненный в виде дросселя,

на фиг.3 - конструкция источника питания, выполненного в виде термоэлементов, смонтированных на дросселе,

на фиг.4 и 8 - конструкция термоэлектрического автономного источника питания, выполненного в виде дросселя цилиндрической формы с установленными на нем элементами термоэлементами,

на фиг.5 - конструкция варианта исполнения источника питания в виде цилиндрического дросселя с оребрением,

на фиг.6 и 9 - конструкция термоэлектрического автономного источника питания, выполненного в виде цилиндрического дросселя с установленными на нем двумя термопарами,

на фиг.7 - конструкция автономного источника питания в виде цилиндрического дросселя с установленными на нем несколькими (более 2-х) термопарами.

на фиг.8 - то же самое, что и на фиг.4, в большем масштабе,

на фиг.9 - то же самое, что и на фиг.6, в большем масштабе.

В эксплуатационной колонне 1 (фиг.1) установлены насосно-компрессорные трубы 2, скважинный прибор 3 сцентрирован внутри обсадной колонны 1 или на нижнем конце насосно-компрессорных труб 2. Насосно-компрессорные трубы 2 оборудованы в верхней части арматурой 4, к которой подсоединена газовая (или нефтяная труба) 5. Ниже или выше скважинного прибора 3 в эксплуатационной колонне 1 установлен дроссель 6. На дросселе 6 (или в виде его) смонтирован термоэлектрический автономный источник питания 7, содержащий один или несколько термоэлементов. В качестве термоэлементов могут быть использованы термопары (элементы Пелетье). Термоэлементы могут быть подключены к накопителю энергии 8.

Эксплуатационная колонна 1 выходит нижним концом в продуктивный пласт 9, который наиболее вероятно состоит из трех слоев: воды 10, нефти 11 и газа 12. В нижней части эксплуатационной колонны 1 около скважинного прибора 3 смонтирован электрический разделитель 13, который обеспечивает передачу информации со скважинного прибора 3 по электромагнитному каналу связи 14 на антенну 15, приемное устройство 16 и далее на персональный компьютер 17, например, типа Pentium. Термоэлектрический автономный источник питания 7 соединен со скважинным прибором 3 проводами 18. В состав скважинного прибора 3 входят датчики измерения параметров, усилитель, преобразователь и передающее устройство, которые в дальнейшем детально не расписаны в описании и не раскрыты на чертежах.

Возможно несколько вариантов исполнения конструкции термоэлектрического автономного источника питания 7. По одному из них (фиг.2) дроссель 6 конструктивно совмещен с термоэлектрическим автономным источником питания 7 и является одновременно термоэлементом 19 (термопарой). “Горячая” поверхность 20 выполнена на внутренней поверхности конического дросселя 6, а “холодная” 21 - на наружной поверхности. В другом варианте исполнения на дросселе 6 (фиг.3) установлены один или несколько термоэлементов 19. В третьем варианте (фиг.4) термоэлементы 19 закреплены на торцах цилиндрического дросселя 6. В четвертом варианте (фиг.5) дополнительно применено оребрение 22. В пятом варианте (фиг.6) на поверхности дросселя установлена одна или несколько термопар 23. Проводами 18 термоэлементы подключены к скважинному прибору 3.

На фиг.6 приведен вариант исполнения дросселя с двумя термопарами 23, а на фиг.7 - с четырьмя термопарами 23.

На фиг.8 представлена детально конструкция термоэлектрического автономного источника питания. Термоэлемент закреплен на дросселе 6 при помощи неэлектропроводного клея 24, который заливает “горячий спай” 25 и “холодный спай” 26.

На фиг.9 представлена схема установки термопар на торцовые поверхности дросселя 6, на которые предварительно нанесен слой неэлектропроводного клея 24. “Холодный спай” 26 установлен сверху, а “горячий спай” 25 соответственно снизу.

При добыче газа или нефти пластовые флюиды (чистая нефть, газ, смесь нефти с водой и т.д.) проходят через дроссель 6, при этом температура пластовых флюидов вследствие эффекта дросселирования жидкости или газа на гидравлическом дросселе снижается (Т1<Т2) и разность температур практически без потерь воспринимается термоэлементами.

В результате возникает термоЭДС и полученный электрический ток поступает либо в скважинный прибор 3 напрямую или через накопитель энергии 8.

Применение изобретения позволит:

1. Создать источник с неограниченным (в пределах срока эксплуатации скважины) ресурсом.

2. Упростить конструкцию источника питания.

3. Повысить КПД источника питания и увеличить ресурс работы аппаратуры контроля.

Формула изобретения

1. Способ энергоснабжения скважинной аппаратуры контроля за разработкой месторождения нефти или газа, включающий подачу электрической энергии от термоэлектрического источника питания, работающего за счет разности температур на его поверхностях, и дросселирование пластовых флюидов для обеспечения указанной разницы температур, отличающийся тем, что термоэлектрический источник питания выполняют в виде дросселя или установливают на нем, а дроссель устанавливают в эксплуатационной колонне.

2. Термоэлектрический автономный источник питания, содержащий один или несколько термоэлементов, отличающийся тем, что термоэлементы выполнены в виде дросселя или установлены на дросселе, а дроссель установлен в эксплуатационной колонне.

РИСУНКИРисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6, Рисунок 7, Рисунок 8, Рисунок 9



 

Похожие патенты:

Изобретение относится к области термоэлектричества и может быть использовано в термоэлектрических генераторах и(или) в термоэлектрических охлаждающих устройствах, размеры ветвей которых порядка 1 мм

Изобретение относится к источникам электроэнергии и представляет собой устройство для прямого преобразования тепловой энергии в электрическую

Изобретение относится к способу получения электроэнергии и может быть использовано для прямого преобразования тепловой энергии в электрическую

Изобретение относится к твердотельным устройствам для преобразования тепловой энергии в электрическую или к устройствам, использующим электрическую энергию для охлаждения

Изобретение относится к области энергетики, в частности к катодной защите магистральных газопроводов от коррозии

Изобретение относится к области энергетики, в частности к катодной защите магистральных газопроводов от коррозии

Изобретение относится к электротехнике

Изобретение относится к нанесению покрытий химическим путем, в частности на изделия из материала, для которого химическое нанесение покрытий прямо неприменимо

Изобретение относится к области термоэлектричества

Изобретение относится к технологическому оборудованию обеспечения бурения под нефть и газ и конкретно предназначено для питания электроэнергией скважинной аппаратуры

Изобретение относится к нефтедобывающей промышленности и может применяться для регистрации изменения во времени давления в скважине при проведении прострелочно-взрывных работ

Изобретение относится к горной промышленности и может быть использовано при кустовом бурении скважин, предусматривающем контроль кривизны скважины

Изобретение относится к строительной технике и предназначено для обнаружения пробойников (П), применяемых для пробивания скважин в грунте

Изобретение относится к области регистрации волновых процессов и может быть использовано при создании зондов, регистрирующих сейсмическое волновое поле в вертикальных и наклонных скважинах

Изобретение относится к инклинометрии, в частности к системам ориентации подвижных объектов, и предназначено для контроля параметров искривления скважин
Изобретение относится к нефтяной промышленности и может найти применение при эксплуатации скважин при определении нарушений обсадной колонны скважин, определении заколонных перетоков

Изобретение относится к области бурения скважин и может быть использовано при инклинометрии скважин в процессе бурения

Изобретение относится к области бурения скважин и может быть использовано при инклинометрии скважин в процессе бурения

Изобретение относится к строительству и может быть использовано для определения положения в пространстве устройств для образования скважин при их проходке, в частности при прокладке инженерных коммуникаций под препятствиями бестраншейным методом

Изобретение относится к нефтегазодобывающей промышленности, а именно к способам интенсификации добычи газа, путем изоляции обводнившейся части продуктивного пласта в скважине
Наверх