Устройство для испытания на пластическое сжатие длинномерных образцов

Изобретение относится к испытательной технике. Устройство для испытания на пластическое сжатие длинномерных образцов состоит из основания, соосно установленных в основании нагружающего и опорного захватов для закрепления образца по его торцам, обоймы и секторов, сопряженных между собой по коническим поверхностям и кинематически связанных соответственно с основанием и образцом по цилиндрическим поверхностям. Угол конусности α конических поверхностей обоймы и секторов определяют решением системы уравнений. Технический результат: повышение точности испытаний. 2 ил.

 

Изобретение относится к области определения физико-механических свойств материалов и может применяться в различных отраслях народного хозяйства (машиностроение, авиастроение, судостроение и др.) для изучения сопротивляемости металлов пластическому деформированию.

Известно устройство [1] для испытаний на сжатие длинномерных образцов. Оно содержит основание, соосно установленные в нем нагружающий и опорный захваты для закрепления в них образца по его торцам, сопрягаемые между собой по коническим поверхностям обойму и секторы, кинематически связанные по цилиндрическим поверхностям соответственно с основанием и образцом. К указанным захватам прикладывается деформирующее усилие и тем самым производится сжатие образца без продольного изгиба благодаря наличию обоймы и секторов. При этом основным геометрическим параметром устройства, обеспечивающим сжатие образца в условиях линейного напряженного состояния без продольного изгиба, является угол конусности конических поверхностей, по которым сопрягаются между собой обойма и секторы.

К недостаткам данного устройства относится низкая точность сжатия длинномерных образцов в условиях линейного напряженного состояния из-за невозможности определения оптимального значения угла конусности конических поверхностей обоймы и секторов.

Изобретение направлено на повышение точности сжатия длинномерных образцов в условиях линейного напряженного состояния за счет определения оптимального значения угла конусности конических поверхностей обоймы и секторов.

Это достигается тем, что угол конусности конических поверхностей α обоймы и секторов определяется решением системы уравнений

где α - угол конусности; f1 f2 - коэффициенты трения в кинематических парах соответственно обойма - основание и обойма - секторы; l0, r0 -соответственно исходные длина и радиус образца; Q - суммарный вес секторов; L - длина секторов; q - интенсивность распределенной нагрузки на образце; А, е0, n - характеристики материала образца; e' - верхний предел интегрирования.

На фиг.1. представлена расчетная схема устройства для определения угла конусности α; на фиг.2 показана расчетная схема сжимаемого образца для определения интенсивности распределенной нагрузки q.

Устройство, схема которого представлена на фиг.1, включает в себя следующие основные элементы: нагружающий 1 и опорные 2 захваты, между которыми установлен образец 3; основание 4; поддерживающие секторы 5 с соосными цилиндрическим и коническим поверхностями; обойма 6 с соосными конической и цилиндрической поверхностями.

Указанные элементы образовывают следующие взаимосвязанные кинематические пары: секторы 5 - обойма 6 по конической поверхности с углом α; обойма 6 - основание 4 по цилиндрической поверхности диаметра D; образец 3 - секторы 5 по цилиндрической поверхности диаметра d.

При приложении сжимающей силы Р к нагружающему захвату 1 начинает деформироваться образец 3. Увеличение его поперечного размера вызовет действие распределенной нагрузки интенсивности q (ее можно принять постоянной по всей длине L контакта сектора с образцом) на секторы 5, вследствие чего последние будут перемещаться в радиальном направлении, вызывая при этом движение обоймы 6 вверх относительно основания 4. Свободному перемещению обоймы 6 вверх будут препятствовать силы трения T1 и Т2, действующие соответственно в кинематических парах обойма - основание и обойма - секторы, а также вес обоймы Q (см. фиг 1).

Для оценки угла конусности α сопрягаемых конических поверхностей обоймы и секторов, при котором устройство обеспечивает равномерное сжатие образца без искривления, рассматривается условие равновесия всех действующих в устройстве сил, в результате чего получают уравнение (1).

Для определения интенсивности распределенной нагрузки q используется методика, изложенная в [2]. На фиг.2 показана расчетная схема сжатия образца. Здесь 1, 2 - соответственно нагружающий и опорный с исходными расчетной длиной l0 и диаметром d0 захваты; 3 - образец; 4 - распределенная нагрузка интенсивности q, вызванная действием секторов на образец и препятствующая искривлению последнего.

Рассматривается критерий положительности работы добавочных нагрузок dP и dq dz [2], который в данном случае запишется в виде

Здесь δy=f(z) - изогнутая ось образца в момент начала его искривления, уравнение которой представляется соотношением

где dl - приращение длины образца; знак "-" принят в связи с тем, что распределенная нагрузка всегда направлена навстречу направлению искривления оси заготовки и потере его устойчивости. Величину сжимающей силы можно определять по формуле

Здесь F - текущая площадь поперечного сечения образца;

аппроксимированное уравнение кривой течения, где А, е0, n - характеристики материала образца; е - накопленная деформация.

После подстановки (4)-(6) в (3) получают соотношение (2) для определения интенсивности распределенной нагрузки q.

Далее решением системы уравнений (1) и (2) при заданных значениях всех входящих в нее параметров определяют угол конусности α конических поверхностей, предел интегрирования е' можно принять равным ~ 0.02, соответствующим относительной деформации ~ 0.02.

Таким образом, предлагаемый способ определения угла конусности сопрягаемых конических поверхностей обоймы и секторов позволит назначать оптимальные значения геометрических размеров всех основных элементов устройства и тем самым обеспечивать возможность деформирования образца без искривления с достаточной точностью, а также проектировать соответствующую штамповую оснастку применительно к производственным условиям.

ИСТОЧНИКИ ИНФОРМАЦИИ

1. Авторское свидетельство СССР № 1810786, G 01 N 3/08, 23.04.1993 г. Бюл. № 15.

2. Хван Д.В. Устойчивость при пластической осадке длинномерной цилиндрической заготовки. Техника машиностроения, 1998 г., № 3, с.40-41.

Устройство для испытания на пластическое сжатие длинномерных образцов, содержащее основание, соосно установленные в основании нагружающий и опорный захваты для закрепления образца по его торцам, обойму и секторы, сопряженные между собой по коническим поверхностям и кинематически связанные соответственно с основанием и образцом по цилиндрическим поверхностям, отличающееся тем, что угол конусности α конических поверхностей обоймы и секторов определяют решением системы уравнений

sinα -f2·cosα =2· Q/L· q+2· f1+f2;

где f1, f2 - коэффициенты трения в кинематических парах соответственно обойма-основание и обойма-секторы;

l0, r0 - соответственно исходные длина и радиус образца;

L - длина секторов;

А, e0, n - характеристики материала;

Q - суммарный вес секторов;

q - интенсивность распределенной нагрузки;

е' - верхний предел интегрирования;

е - накопленная деформация.



 

Похожие патенты:

Изобретение относится к испытательной технике. .

Изобретение относится к средствам для механических испытаний материалов на растяжение. .

Изобретение относится к испытательной технике, а именно: к машинам для испытания образцов на растяжение, сжатие, изгиб. .

Изобретение относится к испытательной технике, предназначенной для определения механических свойств материалов при длительных нагрузках. .

Изобретение относится к испытательной технике. .

Изобретение относится к области определения физико-механических свойств металлов для изучения сопротивления материалов пластическому деформированию. .

Изобретение относится к области испытательной техники, предназначенной для испытаний листовых материалов на растяжение. .

Изобретение относится к испытательной технике, предназначенной для определения механических свойств материалов при длительных нагрузках. .

Изобретение относится к испытаниям на сжатие хрупких материалов, таких как естественные и искусственные строительные камни (цементный камень, раствор, бетон, керамический и силикатный кирпич).

Изобретение относится к области обработки металлов давлением и может применяться в авиа- судо- и машиностроении с целью разработки высоких технологий повышения несущей способности элементов конструкций

Изобретение относится к испытательной технике

Изобретение относится к испытательной технике для определения механических свойств материалов, в частности для исследования эксплуатационных характеристик антисейсмических гидроамортизаторов атомных реакторов и другого оборудования АЭС

Изобретение относится к физическим методам испытаний, в частности к устройствам для испытаний металлопроката

Изобретение относится к материаловедению и касается определения упругих и вязкоупругих свойств волокнистых текстильных материалов посредством испытания образцов текстильных материалов на растяжение

Изобретение относится к испытательной технике

Изобретение относится к горному делу и может использоваться при исследованиях электромагнитных полей, излучаемых образцами горных пород при их разрушении

Изобретение относится к области определения физико-механических свойств металлов и может применяться в машиностроении, авиастроении и других отраслях промышленности для изучения сопротивления материалов пластическому деформированию

Изобретение относится к материаловедению, в частности к изучению восстановительного деформационного процесса нитей и нетканых материалов, и может быть использовано в научных исследованиях для расчетного прогнозирования
Наверх