Устройство для контроля расхода газа и количества примесей в продукции газовых скважин

Изобретение относится к газодобывающей промышленности для одновременного раздельного измерения расхода газа, количеств песка и водоглинопесчаной смеси в продукции газовых скважин. Техническим результатом изобретения является повышение точности измерений в широком диапазоне изменения режимов работы газовых скважин. Устройство содержит два пьезокерамических датчика пульсаций давления потока, выход первого из которых подключен ко входу согласующего усилителя нижних частот. Выход согласующего усилителя подключен ко входу первого активного полосового фильтра (АПФ), выход которого подключен к первому входу масштабирующего усилителя, выход которого подключен ко входу АЦП. Выход АЦП подключен к первому входу микропроцессорного контроллера (МПК). Первый выход МПК подключен ко второму входу масштабирующего усилителя. Устройство содержит также компаратор уровня, формирователь импульсов, второй и третий АПФ, а МПК выполнен с регистраторами параметров продукции. Дополнительно в устройство введены пассивный двумодальный фильтр, коммутатор и четвертый АПФ. Причем выход второго пьезокерамического датчика подключен ко входу двумодального пассивного фильтра, выход которого подключен ко входу второго АПФ. Выход второго АПФ подключен ко входам соответственно третьего и четвертого АПФ, выходы которых подключены к первому и второму входам коммутатора, подключенного ко входу компаратора уровня. Выход последнего подключен ко входу формирователя импульсов, выход которого соединен со вторым входом МПК. Второй выход МПК подключен к третьему входу коммутатора. 2 ил.

 

Предлагаемое изобретение относится к области газодобывающей промышленности и может быть использовано при измерении расхода газа и количества примесей (песка и водоглинопесчаной смеси) в продукции газовых скважин.

Известно устройство для контроля расхода компонентов продукции скважин, содержащее пьезокерамический датчик пульсаций давления потока, согласующий усилитель, три активных полосовых фильтра, масштабирующий усилитель, аналого-цифровой преобразователь, два компаратора уровня, два формирователя импульсов и микропроцессорный контроллер (патент РФ №2151288, Е 21 В 47/ 10, 1998).

Недостатком устройства является низкая помехоустойчивость, так как наличие одного датчика не позволяет разделить полезные сигналы на этапе первичного преобразования.

Наиболее близким к предлагаемому изобретению является устройство для контроля расхода компонентов продукции скважин, содержащее два пьезокерамических датчика, три согласующих усилителя, три активных полосовых фильтра, масштабирующий усилитель, два компаратора уровня, аналого-цифровой преобразователь, два формирователя импульсов и микропроцессорный контроллер, причем согласующий усилитель нижних частот и первый согласующий усилитель верхних частот подключены к первому пьезокерамическому датчику пульсаций давления (газ и песок), а второй согласующий усилитель верхних частот подключен ко второму датчику (ВГПС) (патент РФ №2148168, Е 21 В 47/10, 1998).

Недостатком устройства является невысокая помехоустойчивость каналов газа и песка, так как полезные сигналы поступают с одного датчика, вследствие чего снижается точность контроля расхода газа.

Задачей предлагаемого изобретения является создание устройства для одновременного раздельного измерения расхода газа, количеств песка и водоглинопесчаной смеси (ВГПС) в продукции скважин, обладающего высокой помехоустойчивостью по всем трем каналам за счет схемотехнической унификации каналов ВГПС и песок и временного разделения циклов измерения.

Решение поставленной задачи достигается тем, что в устройство, содержащее первый и второй пьезокерамические датчики пульсаций давления потока, выход первого из которых подключен ко входу согласующего усилителя нижних частот, выход которого подключен ко входу первого активного полосового фильтра, выход которого подключен к первому входу масштабирующего усилителя, выход которого подключен ко входу аналого-цифрового преобразователя, выход которого подключен к первому входу микропроцессорного контроллера, первый выход которого подключен ко второму входу масштабирующего усилителя, компаратор уровня, формирователь импульсов, микропроцессорный контроллер с регистраторами параметров продукции, второй и третий активные полосовые фильтры, согласно изобретению дополнительно введены пассивный двумодальный фильтр, коммутатор и четвертый активный полосовой фильтр, причем выход второго пьезокерамического датчика подключен ко входу двумодального пассивного фильтра, выход которого подключен ко входу второго активного полосового фильтра, выход которого подключен ко входам соответственно третьего и четвертого активных полосовых фильтров, выходы которых подключены к первому и второму входам коммутатора, выход которого подключен ко входу компаратора уровня, выход которого подключен ко входу формирователя импульсов, выход которого подключен ко второму входу микропроцессорного контроллера, второй выход которого подключен к третьему входу коммутатора.

Функционирование предлагаемого устройства осуществляется в соответствии с зависимостями, связывающими расход газа со среднеквадратическим значением информативного сигнала, а количество песка и водоглинопесчаной смеси - с количеством импульсов на выходе формирователя импульсов:

где QГ - расход газа;

KП - количество песка;

KВГПС - количество водоглинопесчаной смеси;

G1 и G2 - среднеквадратические значения сигнала в информативных полосах частот;

S1 - количество импульсов на выходе формирователя импульсов за время коммутации канала песка;

S2 - количество импульсов на выходе формирователя импульсов за время коммутации канала ВГПС;

А, В, С - коэффициенты, определяемые на стадии калибровки.

М - количество циклов измерения;

К - коэффициент усиления масштабирующего усилителя;

Хi - мгновенное значение сигнала в информативной полосе частот.

Блок-схема устройства для контроля расхода газа и количества примесей в продукции газовых скважин показана на фиг.1. Устройство состоит из первого и второго пьезокерамических датчиков, соответственно 1 и 2, пассивного двумодального фильтра 3, согласующего усилителя нижних частот 4, первого, второго, третьего и четвертого активных полосовых фильтров, соответственно 5, 6, 7 и 8, управляемого масштабирующего усилителя 9, аналого-цифрового преобразователя 10, коммутатора 11, компаратора уровня 12, формирователя импульсов 13, а также микропроцессорного контроллера 14 с дисплеем 15, клавиатурой 16 и регистраторами параметров продукции 17.

Устройство работает следующим образом.

При формировании каналов "расход газа" используется первый пьезокерамический датчик 1, а при формировании канала "ВГПС" и "песок" - второй пьезокерамический датчик 2. Это обеспечивает эффективное разделение информативных низкочастотного и высокочастотных сигналов каналов, соответственно "расход газа" и "песок" с "ВГПС" на этапе первичного преобразования пульсаций давления в электрический сигнал.

Сигнал с первого пьезокерамического датчика 1 поступает на согласующий усилитель нижних частот 4, служащий для усиления сигнала в соответствующем информативном низкочастотном диапазоне. Сигнал с согласующего усилителя нижних частот 4 поступает на первый активный полосовой фильтр 6, который формирует информативную полосу частот канала "расход газа". Он выделяет и усиливает сигнал с частотными составляющими в диапазоне от десятков до сотен герц. С выхода активного полосового фильтра 6 сигнал поступает на первый вход масштабирующего усилителя 9, оптимальный коэффициент усиления которого задается автоматически микропроцессорным контроллером 14, выход которого подключен ко второму входу масштабирующего усилителя 9. Выход масштабирующего усилителя соединен со входом аналого-цифрового преобразователя 10, с выхода которого сигнал поступает на первый вход (последовательный цифровой вход) микропроцессорного контроллера 14. Микропроцессорный контроллер производит вычисления в соответствии с алгоритмом функционирования, и по окончании измерений полученное значение индицируется на цифровом дисплее 15.

Формирование информационных сигналов каналов "песок" и "ВГПС" реализовано следующим образом. Сигнал с выхода второго пьезокерамического датчика 2 поступает на пассивный двумодальный фильтр 3, который выделяет сигналы с частотными составляющими в диапазоне наибольшего влияния параметров "песок" и "ВГПС". Сигнал с выхода пассивного двумодального фильтра 3 поступает на второй активный унимодальный полосовой фильтр 5, который выделяет и усиливает сигналы в соответствующем частотном диапазоне. Сигнал с активного полосового фильтра 5 поступает на входы третьего и четвертого активных полосовых фильтров, соответственно 7 и 8, которые разделяют сигналы каналов "ВГПС" и "песок". Выделенные и усиленные сигналы этих каналов поступают на первый и второй входы коммутатора 11, время переключения каналов "песок" и "ВГПС" которого задается микропроцессорным контроллером 14. Сигнал с коммутатора поступает на компаратор уровня 12. Порог срабатывания компаратора уровня настраивается заведомо выше уровня шумов. При появлении полезных сигналов с амплитудой выше порогового уровня компаратор уровня срабатывает и запускает формирователь импульсов 13. По общему числу импульсов можно судить о количестве соударений частиц песка и ВГПС с чувствительным элементом. Импульсы с выхода формирователя импульсов 13 поступают на второй вход (вход внешнего прерывания) микропроцессорного контроллера 14. После соответствующей обработки в микропроцессорном контроллере полученные значения индицируются на цифровом дисплее 15. Клавиатура 16 служит для ввода параметров процесса измерения. Регистраторы параметров продукции 17 предназначены для хранения полученных значений расхода газа и количества примесей.

Алгоритм работы микропроцессорного контроллера 17 приведен на фиг.2. Он содержит следующие основные операции.

По первому входу:

1 - пуск;

2 - подпрограмма самотестирования;

3 - подпрограмма инициализации ресурсов системы;

4 - ввод с клавиатуры количества циклов измерения М;

5 - обнуление накопителей каналов расхода газа, количества песка и количества ВГПС;

6 - инициализация коэффициента усиления К масштабирующего усилителя;

7 - инициализация времени коммутации каналов "ВГПС" и "песок";

8 - чтение из АЦП мгновенного значения сигнала Хi в информативной полосе частот;

9 - накопление суммы (Xi/К)2;

10 - подпрограмма расчета оптимального К;

11 - вывод К на выход микропроцессорного контроллера;

12 - проверка окончания последнего цикла измерения;

13 - вычисление среднеквадратического значения G;

14 - вычисление расхода газа, количества песка и количества ВГПС по формулам (1), (2) и (3) соответственно;

15 - вывод QГ, KП и КВГПС на индикацию;

16 - конец.

По второму входу:

17 - старт подпрограммы обработки прерываний формирователя импульсов;

18 - сброс накопителя импульсов;

19 - увеличение на единицу накопителя импульсов;

20 - проверка окончания времени коммутации;

21 - переключение каналов "ВГПС" и "песок";

22 - возврат в основную программу.

Устройство для контроля расхода газа и количества примесей в продукции газовых скважин, содержащее первый и второй пьезокерамические датчики пульсаций давления потока, выход первого из которых подключен ко входу согласующего усилителя нижних частот, выход которого подключен ко входу первого активного полосового фильтра, выход которого подключен к первому входу масштабирующего усилителя, выход которого подключен ко входу аналого-цифрового преобразователя, выход которого подключен к первому входу микропроцессорного контроллера, первый выход которого подключен ко второму входу масштабирующего усилителя, компаратор уровня, формирователь импульсов, микропроцессорный контроллер с регистраторами параметров продукции, второй и третий активные полосовые фильтры, отличающееся тем, что в него дополнительно введены пассивный двумодальный фильтр, коммутатор и четвертый активный полосовой фильтр, причем выход второго пьезокерамического датчика подключен ко входу двумодального пассивного фильтра, выход которого подключен ко входу второго активного полосового фильтра, выход которого подключен ко входам соответственно третьего и четвертого активных полосовых фильтров, выходы которых подключены к первому и второму входам коммутатора, выход которого подключен ко входу компаратора уровня, выход которого подключен ко входу формирователя импульсов, выход которого подключен ко второму входу микропроцессорного контроллера, второй выход которого подключен к третьему входу коммутатора.



 

Похожие патенты:

Изобретение относится к области газодобывающей промышленности для одновременного раздельного измерения расхода газа, количеств песка и водоглинопесчаной смеси в продукции газовых скважин.

Изобретение относится к контролю за состоянием разработки нефтяного месторождения путем контроля работы скважин и учета суммарной добычи по результатам измерения их суточного дебита.

Изобретение относится к области контроля и учета расхода жидкости и газа в газожидкостных смесях, поступающих из нефтяных скважин. .

Изобретение относится к нефтедобывающей и нефтеперерабатывающей промышленности, а, в частности, к способам учета нефти с определением фазного и компонентного составов при ее добычи из скважины или при отпуске и транспортировке потребителю.

Изобретение относится к области измерения расхода газа в газожидкостных смесях, поступающих из нефтяных скважин. .

Изобретение относится к области измерения расхода жидкости в газожидкостных смесях, поступающих из нефтяных скважин. .

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано для определения мест нарушений в эксплуатационной колонне. .

Изобретение относится к нефтедобывающей промышленности, а именно к средствам автоматического измерения массового расхода жидкости, добываемой из нефтяных скважин, ее объемного расхода, плотности, влагосодержания и расхода свободного газа.

Изобретение относится к нефтедобывающей промышленности. .

Изобретение относится к нефтегазодобывающей промышленности, в частности к средствам контроля заколонных перетоков жидкости и газа в скважинах
Изобретение относится к газовой промышленности, в частности к эксплуатации подземного хранилища газа (ПХГ), и может быть использовано при изучении флюидодинамики, в частности, при контроле герметичности ПХГ, осуществляемом по миграционным потокам газа в вышележащие пористые пласты через контрольные скважины

Изобретение относится к нефтедобывающей промышленности, а именно к определению необходимых для проектирования разработки нефтегазовой залежи исходных данных

Изобретение относится к нефтяной промышленности и предназначено для контроля и/или улучшения потока флюида во время добычи нефти

Изобретение относится к геофизическим исследованиям скважин и может быть использовано для измерения расходов жидкости и газа

Изобретение относится к геофизическим исследованиям действующих нефтегазовых скважин и предназначено для измерения расхода внутрискважинной жидкости

Изобретение относится к измерительной технике и может быть использовано для измерения покомпонентного расхода потока газожидкостной смеси, в частности потока нефти, содержащей свободный газ и воду

Изобретение относится к нефтедобывающей промышленности и может быть использовано в других отраслях народного хозяйства, например при добыче воды
Изобретение относится к нефтедобывающей промышленности и может быть использовано для контроля за разработкой многопластовой залежи, пласты которой по ряду скважин эксплуатируются совместно
Наверх