Анализатор водорода в топливных таблетках из двуокиси урана

Изобретение относится к высокотемпературному нагреву анализируемых образцов и может быть использовано для анализа металлов на содержание кислорода, азота и водорода, в частности для определения общего водорода в таблетках из двуокиси урана. Технический результат изобретения - упрощение конструкции электродной печи, снижение потребляемой мощности тока. В анализаторе водорода, содержащем высокотемпературную печь для нагрева таблеток из двуокиси урана и молибденовый испаритель, молибденовый испаритель снабжен водоохдаждаемыми тоководами, а между молибденовым испарителем и корпусом печи расположен молибденовый отражающий экран. 1 ил.

 

Изобретение относится к высокотемпературному нагреву анализируемых образцов и может быть использовано для анализа металлов на содержание кислорода, азота и водорода, в частности для определения общего водорода в таблетках из двуокиси урана.

Известен анализатор водорода фирмы LEKO RH-404, снабженный высокотемпературной печью EF-400 мощностью 6,5 кВт, известен также отечественный анализатор АВ-7801 НПО “Черметавтоматика” - Москва, имеющий аналогичную электродную импульсную печь сопротивления.

Анализатор водорода состоит из графитового тигля, в котором при температуре 1800°С в атмосфере инертного газа происходит выделение водорода, который затем измеряется в ячейке по теплопроводности. Сигнал детектора обрабатывается с помощью ЭВМ.

Недостатком известных электродных импульсных печей сопротивления является то, что для разогрева анализируемой пробы используется графитовый тигель, в который помещается проба весом не более 1 грамма.

Малое количество анализируемого вещества не всегда может дать объективную информацию, кроме того, графит при высокой температуре начинает испаряться, загрязняя газовый тракт. Вызывает затруднение сама конструкция печи, которая не позволяет одновременно загрузить 5-6 таблеток в реактор.

Наиболее близким по технической сути и достигаемому результату (прототип) является анализатор водорода в топливных таблетках из двуокиси урана по патенту РФ №2151434, МПК G 21 С 17/06, 1999 г.

В прототипе нагревательный элемент выполнен в виде цилиндра из графита, внутри которого размещен молибденовый испаритель. Нагрев таблеток проводится посредством передачи тепла от электродной графитовой печи через стенки молибденового испарителя.

Недостатком данной конструкции электродной печи анализатора водорода является неэффективное использование электроэнергии при нагреве таблеток в испарителе.

Задача изобретения - упрощение конструкции электродной печи, снижение потребляемой мощности тока.

Поставленная задача решается благодаря тому, что в анализаторе водорода, содержащем высокотемпературную печь для нагрева таблеток из двуокиси урана и молибденовый испаритель, согласно формуле изобретения молибденовый испаритель снабжен водоохлождаемыми тоководами, а между молибденовым испарителем и корпусом печи расположен молибденовый отражающий экран.

Указанная совокупность признаков является новой и обладает изобретательским уровнем, так как нагревательным элементом непосредственно является молибденовый испаритель, к торцам которого подведены два токовода, выполненных в виде колец, обеспечивающих надежный контакт с молибденовым испарителем. Анализатор водорода снабжен молибденовым отражающим экраном для создания равномерного температурного поля вокруг молибденового испарителя, а также для повышения изотермичности рабочей зоны. Корпус печи имеет водяное охлаждение.

На чертеже представлена схема анализатора водорода.

Анализатор водорода состоит из молибденового испарителя 1, водоохлаждаемых тоководов 2, водоохлаждаемого корпуса 3, молибденового отражающего экрана 4, штока доставки в испаритель топливных таблеток 5.

Анализатор водорода работает следующим образом.

С помощью штока 5 топливные таблетки из двуокиси урана помещают в молибденовый испаритель 1, соединенный с источником питания. На водоохлождаемые тоководы 2 подают напряжение от 0 до 18 В. Молибденовый отражающий экран 4 создает равномерное температурное поле вокруг молибденового испарителя. Напряжение изменяется по программе посредством микропроцессора. Скорость разогрева молибденового испарителя составляет 300°С в минуту. При необходимости скорость нагрева может быть изменена или переведена в импульсный режим работы. Для надежного электрического контакта и исключения пригорания поверхности токоподводящих графитовых электродов к молибденовому испарителю на поверхность между ними наносят графитовую пасту. Таблетки нагревают до температуры 1800°С в атмосфере гелия, выделяется анализируемый газ, который потоком гелия доставляется в детектор анализатора. Электрическая схема для нагрева молибденового испарителя обеспечивает необходимую температуру и позволяет регулировать мощность и достигать необходимой температуры анализируемых таблеток из двуокиси урана. Наличие водоохлождаемого корпуса 3 позволяет добиваться оптимальной температуры внутри молибденового испарителя.

В результате использования предложенного изобретения уменьшается электропотребление и упрощается конструкция электродной печи.

Анализатор водорода, содержащий высокотемпературную печь для нагрева таблеток из двуокиси урана, молибденовый испаритель, отличающийся тем, что молибденовый испаритель снабжен водоохлаждаемыми тоководами, а между молибденовым испарителем и корпусом печи расположен молибденовый отражающий экран.



 

Похожие патенты:

Изобретение относится к средствам идентификации отработанных тепловыделяющих сборок, предназначенных для последующего хранения и переработки и не имевших либо утративших идентификационные признаки.

Изобретение относится к атомной промышленности и используется при отработке технологии изготовления твэлов дисперсионного типа, у которых в качестве ядерного топлива используются гранулы урана, его сплавов и соединений, а также при гидравлических или иных испытаниях макетов или имитаторов твэлов дисперсионного типа любой конфигурации и формы.

Изобретение относится к технике эксплуатации уран-графитового ядерного реактора и используется при контроле состояния технологических каналов и графитовой кладки активной зоны реактора типа РБМК-1000.

Изобретение относится к области теплофизических исследований и может быть использовано для исследований температурных режимов тепловыделяющих элементов (ТВЭЛ) ядерных реакторов, при исследовании различных аварийных режимов работы тепловыделяющих сборок (ТВС) на электрообогреваемых стендах.

Изобретение относится к атомной энергетике и может найти применение на предприятиях по изготовлению тепловыделяющих сборок энергетических ядерных реакторов. .

Изобретение относится к ядерной энергетике и может найти применение на предприятиях изготовления тепловыделяющих элементов (ТВЭЛ) и сборки их в тепловыделяющие сборки (ТВС) для ядерного реактора.

Изобретение относится к ядерной энергетике, а именно к разработке твэлов, их экспериментальной отработке в ядерных реакторах, в частности высокотемпературных термоэмиссионных твэлов при создании электрогенерирующих каналов термоэмиссионного реактора-преобразователя.

Изобретение относится к аналитической химии, в частности определению водорода в металлах. .

Изобретение относится к области теплофизических исследований и может быть использовано для исследований температурных режимов тепловыделяющих элементов (твэл) ядерных реакторов.

Изобретение относится к аналитической химии, в частности определению общего водорода в таблетках из двуокиси урана

Изобретение относится к области аналоговой вычислительной техники и может быть использовано для поверки приборов измерения реактивности ядерных реакторов (реактиметров)

Изобретение относится к атомной промышленности

Изобретение относится к области производства таблетированного топлива

Изобретение относится к энергетике и может быть использовано при определении запасов до кризиса теплоотдачи в ядерных энергетических установках (ЯЭУ), например, ВВЭР или РБМК

Изобретение относится к анализу ядерных материалов радиационными методами и предназначено для оперативного контроля обогащения гексафторида урана в газовых потоках изотопно-разделительного уранового производства

Изобретение относится к ядерной технике, в частности к изготовлению тепловыделяющих элементов (твэлов) для тепловыделяющих сборок ядерных реакторов

Изобретение относится к ядерной технике, в частности к ультразвуковым способам контроля для обнаружения негерметичных тепловыделяющих элементов, и может быть использовано при проверке герметичности тепловыделяющих элементов отработавших тепловыделяющих сборок, находящихся в воде

Изобретение относится к области атомной энергетики, касается, в частности, способов определения ресурса графитовой кладки и может быть использовано для определения ресурса ядерного канального реактора

Изобретение относится к атомной энергетике, а именно к производству и использованию тепловыделяющих сборок для ядерных реакторов АЭС
Наверх