Коллектор солнечной энергии

Изобретение относится к гелиотехнике, а именно к установкам для преобразования солнечной энергии в тепловую, и может быть использовано для обеспечения объектов бытового и промышленного назначения горячей водой. Коллектор содержит внутреннюю стеклянную оболочку с прикрепленными к ней трубками для подвода и отвода жидкости и с нанесенным на ее наружную поверхность энергопоглощающим покрытием, помещенную во внешнюю оболочку, которая выполнена в виде плоского объема с полуцилиндрическими гранями по бокам. Внешняя оболочка снабжена симметрично расположенными продольными элементами, а внутренняя оболочка - разделительными стеклянными пластинами, которые выполнены в виде лабиринта. Внутренняя поверхность наружной оболочки выполнена зеркальной и с фронтальной стороны прозрачной для солнечных лучей, а с обратной - непрозрачной. Изобретение направлено на повышение КПД коллектора. 3 ил.

 

Изобретение относится к гелиотехнике, а именно к установкам для преобразования солнечной энергии в тепловую, и может быть использовано для обеспечения объектов бытового и промышленного назначения горячей водой.

Известны коллекторы солнечной энергии для нагрева жидкостей, в которых в качестве теплоизоляции используется вакуум (Харченко Н.В. Индивидуальные солнечные установки. М.: Энергоатомиздат, 1991, с.208).

Недостатками которых являются низкий КПД коллектора из-за неполного использования площади восприятия солнечной энергии.

Наиболее близким по технической сущности является коллектор солнечной энергии, содержащий внутреннюю стеклянную оболочку с установленными внутри нее трубками для подвода и отвода жидкости и с нанесенным на ее наружную поверхность энергопоглащающим покрытием, помещенную во внешнюю оболочку, выполненную в виде плоского объема с полуцилиндрическими гранями по бокам (пат. GВ №1575031, кл. F 24 J 3/02, за 1980 г.).

Недостатком данного коллектора является низкий КПД из-за невозможности использования всей площади солнечного коллектора.

Предлагаемым изобретением решается задача повышения КПД солнечного коллектора за счет использования всей площади солнечного коллектора.

Для достижения этого технического результата в коллекторе солнечной энергии, содержащем внутреннюю стеклянную оболочку с установленными внутри нее трубками для подвода и отвода жидкости и с нанесенным на ее наружную поверхность энергопоглощающим покрытием, помещенную во внешнюю оболочку, выполненную в виде плоского объема с полуцилиндрическими гранями по бокам, внешняя оболочка снабжена симметрично расположенными продольными диэлектрическими элементами, а внутренняя оболочка снабжена разделительными стеклянными пластинами, выполненными в виде лабиринта, причем внутренняя поверхность наружной оболочки выполнена зеркальной и с фронтальной стороны прозрачной для солнечных лучей, а с обратной - непрозрачной.

Снабжение внешней оболочки симметрично расположенными продольными диэлектрическими элементами, а внутренней оболочки - разделительными стеклянными пластинами, выполненными в виде лабиринта, а также выполнение внутренней поверхности наружной оболочки зеркальной, а фронтальной стороны ее прозрачной для солнечных лучей и обратной - непрозрачной позволяет использовать всю площадь солнечного коллектора, а следовательно, КПД коллектора увеличивается.

Предлагаемый коллектор солнечной энергии иллюстрируется чертежами, представленными на фиг.1-3.

На фиг.1 показана изометрия общего вида коллектора солнечной энергии.

На фиг.2 - вид сбоку по А-А фиг.1.

На фиг.3 - вид спереди, такой линией показан путь движения жидкости.

Коллектор солнечной энергии (фиг.1) содержит внутреннюю стеклянную оболочку 5 с установленными внутри нее стеклянными трубками 11 и 12 для подвода и отвода жидкости соответственно и с нанесенным на ее наружную поверхность энергопоглощающим покрытием 6, например, из нитридной окиси титана и кремния, имеющим высокую степень поглощения (коэффициент поглощения не менее 0,9) и низкую степень ИК измерения - не более 0,05. Внутренняя оболочка 5 помещена во внешнюю оболочку 1, которая выполнена в виде плоского объема с полуцилиндрическими гранями по бокам. Внутренняя оболочка 5 опирается о днище внешней оболочки 1 посредством пружинных опор 7, выполненных из металла и пластика, для предотвращения нарушения герметичности из-за термического расширения внутренней оболочки 5. На дно внешней оболочки 1 помещен геттер 4 для поглощения проникающих через наружные стенки легких газов типа водород, дейтерий, гелий и др., а между оболочками 1 и 5 расположена промежуточная емкость 8, образованная между внешней и внутренней оболочками. Внешняя оболочка 1 снабжена симметрично расположенными продольными диэлектрическими элементами 9, фиксирующими расстояние между гранями и предотвращающими разрушение плоских стеклянных граней оболочек при откачке воздуха (герметичного объема) по всей площади. Диэлектрические элементы 9 крепятся к граням и выполнены из того материала, что и оболочка. Внутренняя оболочка 5 снабжена разделительными стеклянными пластинами 10, выполненными в виде лабиринта и служащими одновременно и для повышения прочности оболочки 5.

Внутренняя поверхность внешней оболочки 1 выполнена зеркальной, фронтальная сторона 3 которой прозрачна для солнечных лучей, а обратная сторона 2 непрозрачна. Внешняя оболочка 1 и внутренняя оболочка 5 соединены в верхней части коллектора перемычкой 13 (фиг.2) и штенгелем 14 для создания вакуума. Герметичный объем, образованный между оболочками 1 и 5 откачивается до вакуума не менее 10-2 Па. В качестве рабочего тела кроме воды могут быть использованы другие жидкости и газы, а само рабочее тело может быть использовано как теплоноситель, передающий тепло другому телу, например, как в тепловой трубке (термосферы), так и для функционального нагрева (например, опреснительная установка).

Сборку коллектора осуществляют в следующей последовательности.

Полностью готовую внутреннюю оболочку 5 вставляют в готовую внешнюю оболочку 1 до упора в опору 7, после чего в месте стыковки двух оболочек 1 и 5 стеклянная перемычка 13 сплавляется, герметично соединяя оболочки. После чего через штенгель 14 создается вакуум, затем наконечник штенгеля запаивается и герметичное пространство между оболочками имеет вакуум не ниже 1-10-2 Па.

Коллектор солнечной энергии работает следующим образом.

Рабочее тело подается через трубку 11 (фиг.3) во внутреннюю оболочку 5, солнечные лучи проходят сквозь стекло внешней оболочки 1 и поглощаются покрытием 6 внутренней оболочки 5, часть лучей, отражаясь от обратной стороны 2, также поглощается покрытием 6 внутренней оболочки 5. Рабочее тело, циркулируя по лабиринту 10, нагревается по мере прохождения внутри оболочки 5 и поступает к трубке 12. Стеклянные оболочки 5 изготавливаются из стекла натриево-кальциевого силикатного состава либо боросиликатного.

Таким образом, предлагаемый коллектор позволяет использовать всю его площадь и тем повысить КПД солнечного коллектора.

В настоящее время проводятся опытно-промышленные испытания предлагаемого коллектора.

Коллектор солнечной энергии, содержащий внутреннюю стеклянную оболочку с прикрепленными к ней трубками для подвода и отвода жидкости и с нанесенным на ее наружную поверхность энергопоглощающим покрытием, отличающийся тем, что он дополнительно снабжен внешней оболочкой, выполненной в виде плоского объема с полуцилиндрическими гранями по бокам и снабженной симметрично расположенными продольными элементами, в которую помещена внутренняя оболочка, при этом внутренняя оболочка снабжена разделительными стеклянными пластинами, выполненными в виде лабиринта, а внутренняя поверхность наружной оболочки выполнена зеркальной и с фронтальной стороны прозрачной для солнечных лучей, а с обратной – не прозрачной.



 

Похожие патенты:

Изобретение относится к гелиоэнергетике, в частности - к солнечным энергетическим модулям с концентраторами для получения электрической энергии и теплоты. .

Изобретение относится к гелиотехнике. .

Изобретение относится к гелиотехнике и может быть использовано в гелиосистемах отопления и горячего водоснабжения, использующих солнечные коллекторы. .

Изобретение относится к созданию высокотемпературных солнечных энергетических установок с концентраторами солнечного излучения и может быть использовано во всех отраслях промышленности, где требуется тепловая энергия.

Изобретение относится к области создания высокотемпературных солнечных энергетических установок с концентраторами солнечного излучения и может быть использовано во всех отраслях промышленности, где требуется тепловая энергия.

Изобретение относится к области сельского хозяйства, а точнее к воздуховодонагревательным установкам, и может быть использовано в области растениеводства защищенного грунта, особенно в условиях высокогорья.

Изобретение относится к гелиотехнике и может быть использовано в солнечных коллекторах, предназначенных для нагрева воды. .

Изобретение относится к гелиотехнике и может быть использовано, в частности, в устройствах, преобразующих электромагнитное излучение Солнца в тепловую энергию для нагрева теплоносителя.

Изобретение относится к гелиотехнике и может быть использовано в коллекторах для отбора тепла из солнечного потока. .

Изобретение относится к области энергетики, в частности к гелиотехнике, а более конкретно к конструкциям солнечных коллекторов, предназначенных для нужд народного хозяйства, а именно для использования в системах отопления и горячего водоснабжения.

Изобретение относится к гелиотехнике, в частности к коллекторам солнечной энергии, и может быть использовано в системах горячего водоснабжения и обогрева бытовых и промышленных сооружений

Изобретение относится к гелиотехнике, в частности к устройству солнечных жидкостных нагревателей, и может быть использовано как в конструкции индивидуальных солнечных установок, так и в гелиотехнических системах коммунально-бытового и хозяйственного назначения

Изобретение относится к гелиотехнике и может быть использовано в системах горячего водоснабжения

Изобретение относится к теплотехнике, в частности к гелиотехнике, и может быть использовано в солнечных коллекторах, предназначенных для нагрева воды

Изобретение относится к солнечной энергетики, в частности к конструкции солнечного коллектора, способу работы и способу изготовления солнечного коллектора

Изобретение относится к гелиотехнике, в частности к солнечным тепловым коллекторам, и может быть использовано в теплоснабжении зданий и сооружений

Изобретение относится к устройствам, предназначенным для использования в народном хозяйстве лучистой энергии, преимущественно излучения Солнца, и может быть применено в любой отрасли народного хозяйства

Изобретение относится к гелиотехнике и может быть использовано, в частности, в устройствах, преобразующих электромагнитное излучение Солнца в тепловую энергию для нагрева теплоносителя

Изобретение относится к теплообменным устройствам и может быть использовано в любой отрасли, в частности, для использования энергии излучения Солнца

Изобретение относится к теплотехнике и может быть использовано в устройствах для преобразования солнечной энергии в тепловую энергию теплоносителя
Наверх