Способ и устройство построения невозмущаемой безгироскопной вертикали

Изобретение относится к области построения датчиков угловых координат для систем автоматического управления движением, главным образом, в качестве авиагоризонта (вертикали) для летательных аппаратов любого типа. Сущность изобретения: возмущаемые ускорениями объекта измерения текущих углов отклонения осей связанной системы координат и местной вертикали, полученные с помощью физического маятника, непрерывно корректируются значениями этих ускорений от приемника спутниковой навигации и курсоуказателя, в качестве которого может быть использован трехосный феррозонд. Техническим результатом является упрощение способа и снижение стоимости его приборной реализации. 2 н. и 2 з.п. ф-лы, 4 ил.

 

Изобретение относится к области построения датчиков угловых координат для систем автоматического управления движением, главным образом в качестве авиагоризонта (вертикали) для летательных аппаратов любого типа.

Из школьных учебников физики хорошо известен прибор, указывающий направление на центр масс Земли - местную вертикаль. Это физический маятник, либо в виде отвеса, либо жидкостный - в виде пузырькового (сферического по двум осям) уровня. Датчиками отклонения объекта от местной вертикали могут быть также два линейных акселерометра, оси чувствительности которых ориентированы по продольной и поперечной осям объекта. Все вышеупомянутые датчики указывают направление местной вертикали только на неподвижном основании. На подвижном объекте их показания возмущаются его ускорениями. Это главный недостаток физических маятников как датчиков местной вертикали. Геометрическая интерпретация этих возмущений показана на фиг.1 и 2 - по одной из осей (для определенности по продольной).

На этих фигурах обозначено:

О - начало связанной с объектом системы координат;

OX - продольная координатная ось объекта при его точной горизонтальной ориентации;

ОХ1 - продольная ось объекта при отклонениях ОХ на угол ϑ;

- вектор силы тяжести;

ax - продольное возмущающее ускорение;

на фиг.1:

О1 - точка подвеса маятника, совмещенная с началом вышеуказанной связанной системы координат;

m - его центр масс;

ϑg - угол отклонения маятника под действием вектора;

ϑа - угол отклонения маятника под действием возмущающего ускорения ;

ϑизм - измеренное (возмущенное) значение угла отклонения маятника от вертикали в продольной плоскости;

на фиг.2:

ag=g-sinϑ - линейное ускорение, измеренное акселерометром по оси ОХ1 связанной системы координат, вызванное наклоном объекта к горизонту на угол ϑ;

ax1=axcosϑ - возмущающее ускорение по оси ОХ1;

aхизм=agx1.

Из чертежа на фиг.1 очевидно, что ϑизмgа,

где , поэтому

Аналогично для угла крена можно записать:

Из фиг.2 (для акселерометра) очевидно, что аизм=g·sinϑ+axcosϑ.

В общем случае придется решать это трансцендентное управление. Однако для малых углов, ϑ тангажа и крена можно ограничиться приближением с последующим (при необходимости) уточнением последовательными приближениями:

В настоящее время известны два способа построения невозмущаемой ускорениями объекта вертикали (измеряемых углов тангажа и крена летательных аппаратов).

Первый способ заключается в использовании гиромаятника с шулеровским периодом собственных колебаний (≈84,4 минуты). Такой маятник моделирует физический маятник Шулера длиной в радиус Земли (центр масс маятника в ее центре, а точка подвеса на поверхности) и невозмущаем ускорениями точки подвеса по определению.

Второй способ - это построение системы полной угловой ориентации объекта (включая и вертикаль) с помощью мультиантенного (3-4 пространственно разнесенных антенны) спутникового интерферометра. Интерферометр существенно усложняет спутниковый приемник - необходимо сначала сигналы всех антенн по разному промодулировать (например, разными псевдослучайными кодами), объединить в общий фидер, усилить, преобразовать частоту и отфильтровать в едином радиотракте, а затем разделить и подать на фазометры. Устройства, реализующие эти способы, достаточно сложны, громоздки и дороги.

Предлагаемый способ и устройство построения невозмущаемой вертикали использует возмущаемые ускорениями объекта измерения и компенсирует в них погрешности, вызываемые ускорениями с помощью оценок этих ускорений, полученных с помощью обычного одноантенного приемника спутниковой навигации и, по существу, прямого прототипа не имеет. Тем не менее, рассмотрим в качестве прототипа способ уменьшения влияния возмущающих ускорений в устройствах типа авиационных гирогоризонтов, где первичным датчиком местной вертикали является маятниковый прибор (двухосный акселерометр) дискретного действия - жидкостный замыкатель (переключатель), подверженный воздействию возмущающих ускорений. Этот маятниковый переключатель управляет прецессией гироскопа через датчики моментов (14, 24) на рамках его карданова подвеса.

Прототипом предлагаемого способа и устройства может быть авиагоризонт АГД-1 [1].

Фиг.3 - кинематическая схема авиагоризонта АГД-1, где обозначено:

1, 14, 16 - двигатель - генератор; 2, 5, 23 - коммутаторы; 3, 5, 10 - рамки; 4, 24 - моментные электродвигатели; 7, 12, 13, 17 - сельсины; 8, 9 - реле; 11 - индуктивный датчик; 15 - катушка; 18 - шестерня; 19, 22 - индексы; 20 - шкала; 21 - кремальера; 25 - жидкостный маятниковый переключатель; 26 - контакты выключателя коррекции; 27 - жидкостный выключатель.

Гироскоп в этих приборах выполняет 2 функции:

- сглаживания (релейной характеристики маятникового датчика и высокочастотных возмущающих ускорений);

- элемента пространственной памяти построенной вертикали на время выключения сигналов коррекции от маятникового датчика.

Снижение влияния возмущающих ускорений в способе-прототипе достигается принудительным размыканием цепей коррекции (26, 27) гироскопа от маятникового датчика на время действия сильных возмущающих ускорений (при взлете и на виражах). Недостатки способа-прототипа:

- сложность и высокая стоимость его приборной реализации;

- возмущаемость в основном режиме коррекции гироскопа от маятникового датчика.

Техническим результатом предлагаемых способа и устройства является устранение указанных недостатков, которое достигается путем измерения маятниковым прибором углов тангажа и крена и коррекции этих измерений линейными возмущающими ускорениями, оценки которых получают от спутникового приемника одним из известных способов, например численным дифференцированием (вычислением разностей соседних значений) радиальных скоростей, измеряемых упомянутым приемником.

Сущность предлагаемого изобретения заключается в том, что в устройство построения невозмущаемой безгироскопной вертикали, содержащее систему курсоуказания, физический маятник, выполненный с двухосным подвесом (сферический пузырьковый уровень или пару линейных акселерометров с продольной и поперечной ориентацией осей их чувствительности), систему автоматического управления движением, введен приемник спутниковой навигации, осуществляющий формирование оценок линейных ускорений объекта, и вычислительный блок, например микрокомпьютер, в котором возмущаемые ускорениями объекта измерения текущих углов отклонения осей связанной системы координат и местной вертикали, полученные с помощью физического маятника, непрерывно корректируются значениями этих ускорений от приемника спутниковой навигации и курсоуказателя и подаются в систему автоматического управления движением, например систему типа автопилота, и способа непрерывной коррекции, измерений маятниковым прибором или двумя линейными горизонтальными акселерометрами с помощью микрокомпьютера по данным спутникового навигационного приемника.

В устройстве в качестве курсоуказателя на объекте используют трехосный феррозонд, магнитный курс, получаемый от феррозонда, используют для пересчета географических проекций ускорений (аn и ae) в связанные (aх и ay), причем для повышения точности этого пересчета в беспилотных летательных аппаратах малого радиуса действия (до сотен км) поправку магнитного курса, приближающего его к истинному, вводят однократно при старте (от внешнего источника курсоуказания) и используют в течение всего времени полета; на самолетах с большой дальностью эту поправку периодически уточняют по данным самолетного курсоуказателя.

Упомянутый феррозонд используют в качестве элемента пространственной памяти на время пропадания сигналов спутников (например, из-за воздействия помех), для чего непрерывно вычисляют, сглаживают и хранят в памяти разности углов пространственной ориентации вектора путевой скорости и вектора напряженности магнитного поля Земли от феррозонда, сигналы от феррозонда в режиме пространственной памяти используют для управления летательным аппаратом.

Структурная схема предлагаемого устройства - на фиг.4, где

28 - антенна;

29 - спутниковый навигационный приемник;

30 - система курсоуказания;

31 - физический маятник;

32 - вычислительный блок (например, микрокомпьютер);

33 - система управления движением (например, автопилот).

Устройство работает следующим образом.

К системе курсоуказания 30, физическому маятнику 31, выполненному с двухосным подвесом или в виде сферического пузырькового уровня, или пары линейных акселерометров с продольной и поперечной ориентацией осей их чувствительности, системе автоматического управления движением 33, введены дополнительно приемник спутниковой навигации 29, осуществляющий формирование оценок линейных ускорений объекта, и вычислительный блок 32, например микрокомпьютер, в котором возмущаемые ускорениями объекта измерения текущих углов отклонения осей связанной системы координат от местной вертикали, полученные с помощью физического маятника непрерывно корректируются значениями этих ускорений от приемника спутниковой навигации и курсоуказателя и подаются в систему автоматического управления движением, например систему типа автопилота. Осуществляется непрерывная коррекция измерений, полученных маятниковым прибором или двумя линейными горизонтальными акселерометрами с помощью микрокомпьютера по данным спутникового навигационного приемника.

Точность оценки ускорения объекта способом численного дифференцирования радиальной скорости определяется очевидной формулой.

где σа - среднеквадратическая погрешность (СКП) ускорения;

Гф - геометрический фактор ухудшения точности навигационного решения (обычно не более 2-3 для горизонтальных проекций);

σv - СКП радиальных скоростей, измеряемых в спутниковом приемнике (обычно );

- множитель, отражающий удвоение дисперсии разности независимых случайных величин;

Δt - интервал отчетов.

Расчет по этой формуле показывает, что при секундном темпе отсчетов проекции линейных ускорений определяются с точностью в единицы миллиметров в секунду2, при 10-герцовом темпе - первые сантиметры/сек2, т.е. ≈10-3g, что сопоставимо с точностью акселерометров среднего класса и может быть использовано для коррекции возмущаемого маятника с точностью до 10-3 раз (т.е. ≈3,5 угловых минут).

Другим способом получения оценок ускорения в спутниковом приемнике является включение составляющих этого ускорения в число оцениваемых способом наименьших квадратов (СНК) [2] элементов вектора состояния объекта. Поскольку ускорения в приемнике непосредственно не измеряются, точность их выработки СНК будет иметь такой же порядок, что и при дифференцировании скорости.

Список использованной литературы:

1. В сети Интернет http://www.sla.ru/aviamaster/htm.files/giro prib.htm Рис.13 Кинематическая схема авиагоризонта АГД-1.

2. Бортовые устройства спутниковой радионавигации. // Под ред. В.С.Шебшаевича. М., 1988. С.201.

1. Способ построения невозмущаемой безгироскопной гравитационно-спутниковой вертикали подвижного объекта, включающий измерения текущих углов отклонения осей связанной системы координат от плоскости местного горизонта (вертикали) - тангажа и крена с помощью физического маятника, выполненного в виде двухосного подвеса, или сферического пузырькового уровня, или пары линейных горизонтальных акселерометров с продольной и поперечной ориентацией осей их чувствительности, возмущенные линейными ускорениями объекта, отличающийся тем, что формирование оценок вышеупомянутых возмущающих линейных ускорений (их северной и восточной составляющих αn и αе соответственно) осуществляют по данным спутникового навигационного приемника путем численного дифференцирования соответствующих скоростей или способом наименьших квадратов, пересчитывают эти составляющие в проекции αx и αу связанной системы координат с использованием курса от системы курсоуказания объекта и вводят непрерывно или дискретно коррекцию в возмущенные этими ускорениями измерения физического маятника или акселерометров, чем достигают построения невозмущаемой вертикали (углы тангажа ϑ и крена γ) по формулам

для физического маятника:

для линейных акселерометров:

2. Устройство построения невозмущаемой безгироскопной вертикали, содержащее систему курсоуказания, физический маятник, выполненный в виде двухосного подвеса, или сферического пузырькового уровня, или пары линейных акселерометров с продольной и поперечной ориентацией осей их чувствительности, систему автоматического управления движением, отличающееся тем, что в него введен приемник спутниковой навигации, осуществляющий формирование оценок линейных ускорений объекта, и вычислительный блок, например микрокомпьютер, в котором возмущаемые ускорениями объекта измерения текущих углов отклонения осей связанной системы координат и местной вертикали, полученные с помощью физического маятника, непрерывно корректируются значениями этих ускорений от приемника спутниковой навигации и курсоуказателя и подаются в систему автоматического управления движением, например систему типа автопилота.

3. Устройство по п.2, отличающееся тем, что в качестве курсоуказателя на объекте используют трехосный феррозонд, магнитный курс, получаемый от феррозонда, используют для пересчета географических проекций ускорений (αn и αе) в связанные (αx и αу), причем для повышения точности этого пересчета в беспилотных летательных аппаратах малого радиуса действия (до сотен км) поправку магнитного курса, приближающего его к истинному, вводят однократно при старте (от внешнего источника курсоуказания) и используют в течение всего времени, полета; на самолетах с большой дальностью эту поправку периодически уточняют по данным самолетного курсоуказателя.

4. Устройство по пп.2 и 3, отличающееся тем, что упомянутый феррозонд используют в качестве элемента пространственной памяти на время пропадания сигналов спутников (например из-за воздействия помех), для чего непрерывно вычисляют, сглаживают и хранят в памяти разности углов пространственной ориентации вектора путевой скорости и вектора напряженности магнитного поля Земли от феррозонда, сигналы от феррозонда в режиме пространственной памяти используют для управления летательным аппаратом.



 

Похожие патенты:

Изобретение относится к устройствам для измерения углов ориентации летательных аппаратов, а также наземных транспортных средств и других подвижных объектов. .

Изобретение относится к измерительной технике и предназначено для систем стабилизации, наведения и управления, работающих на подвижных объектах. .

Изобретение относится к гироскопической технике и может быть использовано в измерительных системах и системах управления подвижных объектов. .

Изобретение относится к авиационной технике. .

Изобретение относится к области гироскопических приборов, предназначенных для определения истинной вертикали на движущихся или неподвижных объектах и применяющихся, например, в качестве датчиков крена и тангажа летательных аппаратов.

Изобретение относится к области измерительной техники, конкретно к той ее части, которая занимается вопросами азимутального ориентирования подвижных объектов, имеющих в системах управления гиростабилизаторы.

Изобретение относится к области измерительной техники, конкретно к той ее части, которая занимается вопросами азимутального ориентирования подвижных объектов, имеющих в системах управления гиростабилизаторы.

Изобретение относится к гироскопической технике и может быть использовано в гироскопических приборах для стабилизации вертикального направления

Изобретение относится к определению параметров траекторий нефтяных, газовых, геотермальных, железорудных и др

Изобретение относится к области приборостроения, а именно к системам навигации с гиростабилизированными инерциальными платформами

Изобретение относится к гироскопической технике и может быть использовано в гироскопических приборах для стабилизации вертикального направления

Изобретение относится к точному приборостроению, а именно к гироскопической технике, и может быть использовано в гиростабилизаторах

Изобретение относится к точному приборостроению и может быть использовано, например, для построения скважинных приборов. Гироинерциальный модуль содержит одноосный силовой гироскопический стабилизатор, на платформе (3) которого размещены два акселерометра (9.1, 9.2) и гироузел, представляющий собой рамку (2) с не менее двумя жестко установленными в ней гиромоторами (1), оси вращения которых параллельны. По оси подвеса платформы (3) установлены системный датчик угла (8) и стабилизирующий мотор, состоящий из не менее двух последовательно соединенных двигателей (6.1, 6.2). Применение не менее двух гиромоторов и не менее двух двигателей позволяет перевести габариты скважинного прибора по диаметру в габариты по длине, а взаимное положение ротора (8.1) относительно статора (8.2) системного датчика угла и статора относительно корпуса выполнено с возможностью обеспечения внешней начальной азимутальной выставки платформы одноосного силового гироскопического стабилизатора гироскопического инклинометра. 2 з.п. ф-лы, 1 ил.

Изобретение относится к исследованию нефтяных и газовых скважин, в частности к определению углов наклона и траектории ствола скважины. Техническим результатом является повышение точности определения траектории протяженных наклонных и горизонтальных скважин. Предложен способ определения зенитного угла и азимута скважины посредством гироскопического инклинометра, заключающийся в том, что при начальной азимутальной ориентации гироинклинометра и при движении скважинного прибора в скважине непрерывно измеряют напряжение, пропорциональное углу ошибки стабилизации платформы. Полученное напряжение используют при определении угловой скорости по оси чувствительности датчика угловой скорости без погрешности от угла ошибки стабилизации. А указанную угловую скорость используют при расчете азимутального угла осей чувствительности акселерометров на момент окончания начальной азимутальной ориентации. Для реализации предложенного способа разработано устройство, в котором в электрическую схему усилителя канала стабилизации платформы введен дополнительный выход, соединенный с дополнительным каналом обработки информации, введенным в блок цифровой обработки. 2 н. и 1 з.п. ф-лы, 1 ил.
Наверх