Ускоренный способ определения химического потребления кислорода водными растворами, содержащими органические соединения в виде взвешенных частиц

Изобретение относится к промышленной санитарии и может быть использовано санитарно-эпидемиологическими станциями (СЭС) и экологическими лабораториями при анализе сточных вод предприятий пищевой промышленности. Ускоренный способ определения химического потребления кислорода водными растворами, содержащими органические соединения в виде взвешенных частиц, предусматривает приведение анализируемого раствора в контакт с бихроматом калия, серной кислотой и сульфатом ртути, выдержку, охлаждение смеси до комнатной температуры, добавление индикатора ферроина, титрование избытка бихромата калия раствором соли Мора и вычисление величины химического потребления кислорода по количеству раствора соли Мора, затраченному на титрование, причем анализируемый раствор предварительно гомогенизируют до достижения диаметра взвешенных частиц не более 0,03 мм, смесь выдерживают в течение 4 минут, а концентрация раствора соли Мора составляет 0,125 н. Достигается снижение погрешности определения.

 

Изобретение относится к промышленной санитарии и может быть использовано санитарно-эпидемиологическими станциями (СЭС) и экологическими лабораториями при анализе сточных вод предприятий пищевой промышленности.

Известен способ определения химического потребления кислорода (ХПК) водными растворами, содержащими органические соединения, предусматривающий смешивание анализируемого раствора с раствором бихромата калия, серной кислотой, сульфатом ртути и катализатором - сульфатом серебра, кипячение смеси в течение 2 часов, охлаждение, титрование неизрасходованного в процессе реакции бихромата калия раствором соли Мора и вычисление величины ХПК по количеству раствора соли Мора, затраченному на титрование [Лурье Ю.Ю. Аналитическая химия промышленных сточных вод. М.: Химия, 1984, с.74-77].

Недостатки известного способа заключается в большой его продолжительности и необходимости использования дорогостоящего катализатора - сульфата серебра.

В качестве прототипа принят ускоренный способ определения ХПК растворами, содержащими органические соединения, предусматривающий приведение анализируемого раствора в контакт с 0,25 н. раствором бихромата калия, серной кислотой и сульфатом ртути, выдерживание смеси в течение 2 минут, охлаждение смеси до комнатной температуры, добавление индикатора ферроина, титрование избытка бихромата калия 0,25 н. раствором соли Мора, затраченной на титрование [Лейте В. Определение органических загрязнений питьевых, природных и сточных вод. М.: Химия, 1975, с.64-65].

Недостаток способа по прототипу заключается в высокой погрешности (низкой точности) ± 75 мг О2 / л при анализе сточных вод предприятий пищевой промышленности.

Техническим результатом изобретения является снижение погрешности определения химического потребления кислорода водными растворами, содержащими органические соединения в виде взвешенных частиц.

Технический результат достигается тем, что в способе определения химического потребления кислорода водными растворами, содержащими органические соединения в виде взвешенных частиц, предусматривающем приведение анализируемого раствора в контакт с бихроматом калия, серной кислотой и сульфатом ртути, выдержку, охлаждение смеси до комнатной температуры, добавление индикатора ферроина и титрование избытка бихромата калия раствором соли Мора и вычисление величины химического потребления кислорода по количеству раствора соли Мора, затраченному на титрование, согласно изобретению, пробу анализируемой жидкости предварительно гомогенизируют до достижения диаметра взвешенных частиц не более 0,03 мм, смесь выдерживают в течение 4 минут, а концентрация раствора соли Мора составляет 0,125 н.

Предлагаемый способ осуществляют следующим образом.

Исследуемую жидкость в количестве 100-150 мл помещают в лабораторный гомогенизатор.

Этот гомогенизатор должен представлять собой сосуд с многолопастной мешалкой, имеющей заостренные края. Частота вращения мешалки - не менее 14 000 об/ мин. Зазор между мешалкой и краями сосуда - не более 5 мм.

Исследуемую жидкость гомогенизируют в течение не менее 3 минут. Это обеспечивает измельчение частиц взвеси до диаметра 0,005-0,03 мм (величины диаметров установлены седиментацией в центробежном поле). Дальнейшая гомогенизация не уменьшает диаметр частиц.

В коническую колбу из термостойкого стекла емкостью 250 мл помещают 1 мл гомогенизированной пробы, 2,5 мл 0,25 н. раствора бихромата калия и 0,25 г сульфата ртути. Затем осторожно при перемешивании в смесь вносят 7,5 мл концентрированной серной кислоты.

Смесь сразу саморазогревается (за счет экзотермической реакции серной кислоты с водой). Смесь выдерживают в течение 4-5 минут, а затем охлаждают водой до комнатной температуры. В смесь вносят 100 мл дистиллированной воды и 3-4 капли индикатора "ферроин". Затем смесь титруют 0,125 н. раствором соли Мора до перехода окраски раствора из светло-желтой в коричневую.

Влияние отличительных признаков на точность определения было изучено при метрологической аттестации предлагаемого способа.

Гомогенизация анализируемой жидкости снижает погрешность определения по следующей причине.

Сточные воды предприятий пищевой промышленности отличаются высоким химическим потреблением кислорода (ХПК) - от 500 до 4000 мг О2 / л и наличием большого количества взвешенных частиц. Эти сточные воды представляют собой не растворы, а взвесь ряда органических веществ (белков, жиров, полисахаридов) в растворе органических (белки и полисахариды) и неорганических веществ.

Размеры частиц взвеси достигают 0,3 мм, такие частицы трудно окислить даже при длительном кипячении с кислотой. Действительно, на поверхности частиц образуется плотный слой (корка), состоящий из продуктов неполного окисления. Этот слой препятствует дальнейшей реакции, что занижает результат анализа. Так как кинетика разрушения этого слоя зависит от многих неконтролируемых факторов, процесс разрушения можно считать чисто случайным. Поэтому занижение результатов носит случайный характер, а значит, точно учесть его величину невозможно.

Иными словами, в способе по прототипу имеет место чисто случайная погрешность, компенсировать которую каким-либо расчетным путем невозможно. Именно эта погрешность является основной составляющей погрешности определения по прототипу.

Гомогенизация снижает размеры взвешенных частиц не менее чем на порядок и, соответственно, во столько же раз снижает вероятность образования прочной корки на поверхности взвешенных частиц. Это снижает случайную составляющую погрешности определения с ±31 мг О2 / л до ±16 мг О2 / л.

Увеличение времени выдерживания смеси с 2 минут по прототипу до 4 минут позволяет снизить случайную составляющую погрешности с ± 56 мг O2 / л до ±44 мг О2 / л за счет более полного разрушения взвешенных частиц. Дальнейшее увеличение времени выдерживания не снижает погрешность.

Использование при титровании раствора соли Мора с концентрацией 0,125 н. позволяет повысить точность определения за счет повышения точности титрования. Случайная составляющая погрешности определения уменьшается с ±40 мг О2 / л до ±29 мг О2 / л.

Таким образом, согласно правилу сложения погрешностей [Шенк Р. Теория инженерного эксперимента. М.: Мир, 1972, с.76-79], суммарная случайная погрешность определения уменьшается с ± 75,4 мг О2 / л по прототипу:

до ±55,1 мг О2 / л по предлагаемому способу:

то есть в 1,4 раза.

Пример. Образец сточной воды в количестве 150 мл, отобранный в соответствии с действующими правилами отбора проб сточных вод, помещают в лабораторный гомогенизатор MPW- 302 производства фирмы " Mechanika Precizijna" (Польша).

Пробу гомогенизируют в течение 5 минут. В коническую колбу из термостойкого стекла емкостью 250 мл помещают 1 мл гомогенизированной пробы, 2,5 мл 0,25 н. раствора бихромата калия и 0,25 г сульфата ртути. Затем в смесь вносят 7,5 мл концентрированной серной кислоты.

Смесь выдерживают в течение 4 минут, а затем охлаждают водой до комнатной температуры. В смесь вносят 100 мл дистиллированной воды и 4 капли раствора индикатора "ферроин". Затем смесь титруют 0,125 н. раствором соли Мора до перехода окраски раствора из светло-желтой в коричневую.

Величину ХПК вычисляют по формуле

где V0 - объем пробы, мл

V1 - количество раствора бихромата калия, мл

V2 - количество раствора соли Мора, затраченное на титрование, мл

С - концентрация раствора соли Мора, г-экв/ л

8 - химический эквивалент кислорода

1000 -коэффициент пересчета.

Ускоренный способ определения химического потребления кислорода водными растворами, содержащими органические соединения в виде взвешенных частиц, предусматривающий приведение анализируемого раствора в контакт с бихроматом калия, серной кислотой и сульфатом ртути, выдержку, охлаждение смеси до комнатной температуры, добавление индикатора ферроина, титрование избытка бихромата калия раствором соли Мора и вычисление величины химического потребления кислорода по количеству раствора соли Мора, затраченному на титрование, отличающийся тем, что анализируемый раствор предварительно гомогенизируют до достижения диаметра взвешенных частиц не более 0,03 мм, смесь выдерживают в течение 4 мин, а концентрация раствора соли Мора составляет 0,125 н.



 

Похожие патенты:

Изобретение относится к токсикологии и касается определения чувствительности дафний к токсическому действию водорастворимых химических веществ. .

Изобретение относится к гигиене и санитарии пресноводных водоемов и может быть использовано для микробиологического тестирования состояния водоисточника в зоне стоков сельскохозяйственных предприятий, в частности птицефабрик и свинокомплексов.

Изобретение относится к областям аналитической и экологической химии и может быть использовано для определения микроконцентраций сурьмы в природных водах для экологического мониторинга.
Изобретение относится к средствам управления производительностью и контроля за дозировкой, а именно к способам управления и контроля нефти и нефтехимических продуктов посредством химической обработки, а также к способам оперативного использования датчиков на основе кварцевых кристаллических микровесов.

Изобретение относится к области мониторинга окружающей среды. .

Изобретение относится к области санитарной гигиены и промышленной экологии и может быть использовано для определения концентрации растворенных в воде солей. .

Изобретение относится к области определения остаточного содержания дезинфицирующего средства в воде, в частности к водному раствору азокрасителя для указанной цели.

Изобретение относится к области медицинской экологии, разделу биология. .

Изобретение относится к охране окружающей среды, а именно к способам определения степени загрязнения природных и сточных вод лигнинными веществами в зоне влияния целлюлозно-бумажных производств, и может быть использовано при анализе сточных вод.

Изобретение относится к аналитической химии органических соединений и может быть применено для контроля очищенных сточных вод предприятий лакокрасочной промышленности.

Изобретение относится к способу проведения анализа на число омыления и может быть использовано в лакокрасочной, кожевенной, резинообувной, других отраслях промышленности, а также в исследовательских лабораториях, в частности в кинетических исследованиях с маслами, жирами, восками, их композициями различной степени сложности и целевого назначения.

Изобретение относится к способам определения количественного состава растворов с помощью химического микроанализа, а более конкретно путем микротитрования. .

Изобретение относится к методам аналитического определения кислот, кислых солей, других веществ, имеющих кислую реакцию и реагирующих со щелочами, а именно к методу титрования, используемого как в учебном процессе, так и на производстве.

Изобретение относится к аналитической химии органических соединений и может быть использовано для контроля качества технологических и очищенных сточных вод предприятий по производству синтетических красителей, фармацевтических препаратов.
Изобретение относится к области исследования или анализа материалов, в частности, нефти или других вязких маслянистых жидкостей, путем определения их химических или физических свойств.

Изобретение относится к способам определения массовой доли сернокислого и азотнокислого кальция в аммиачной селитре с доломитно-сульфатной добавкой. .

Изобретение относится к способам определения термодинамических, реальных, условных констант равновесия неорганических и органических веществ, которые применяются в теоретической и практической областях химии.

Изобретение относится к аналитической химии органических соединений и может быть использовано для контроля качества технологических и очищенных сточных вод предприятий по производству синтетических красителей, полимерных материалов и пестицидов.

Изобретение относится к аналитической химии органических соединений и может быть использовано для контроля технологических и очищенных сточных вод предприятий по производству синтетических красителей и пестицидов.

Изобретение относится к аналитической химии и может быть использовано в химической технологии производства целлюлозы сульфатным или натронным способом
Наверх