Способ идентификации каналов регулирования объектов с нанесением пробных сигналов на прогнозируемые рабочие управления

Изобретение относится к области автоматического управления и регулирования и может быть использовано для построения математических моделей каналов регулирования циклических и непрерывных технологических объектов в системах управления. Технический результат заключается в повышении точности идентификации. Способ включает предварительную оценку статистических характеристик ошибок прогнозирования и регулирования, совместное прогнозирование рабочих управлений и вектора выходных величин объекта, нанесение пробного испытательного воздействия на прогнозируемые рабочие управления, фиксирование траектории изменения выходных переменных во времени и оценку по полученным данным динамических характеристик исследуемых каналов регулирования, при этом дополнительно определяют перечень возможных типопредставительных ситуаций и предварительно оценивают требуемые реакции на эти ситуации, оперативно контролируют наличие и изменение типопредставительных ситуаций на объекте, корректируют траектории прогнозируемых выходных переменных, по отношению к которым оценивают реакцию объекта на пробное воздействие, выбирают алгоритмы назначения параметров реакции типопредставительных ситуаций в функции параметров самих типопредставительных ситуаций. 1 ил.

 

Изобретение относится к автоматическому управлению и регулированию и может быть использовано для построения математических моделей каналов регулирования циклических и непрерывных технологических объектов в системах управления.

Известен комплекс методов идентификации объектов в системах управления, позволяющий строить модели объектов с применением испытательных (пробных, тестирующих) воздействий, но в то же время минимизирующие их негативное влияние на нормальное протекание производственных процессов (см. «Идентификация объектов в системах управления / Мышляев Л.П., Львова Е.И., Киселев С.Ф, Иванов С.Я. // Изв. ВУЗов. Черная металлургия. - 2001 - №12. С.32-35»). Для идентификации с прогнозированием траекторий рабочего управления и нанесением на них испытательных воздействий выполняют операции совместного прогнозирования траекторий управляющих входных и выходных воздействий объекта, наносят испытательные воздействия на прогнозируемые траектории рабочих управлений по составленной схеме планирования эксперимента, оценивают коэффициенты передачи исследуемых каналов регулирования по разности между спрогнозированными и фактически полученными траекториями выходных воздействий объекта и по разности между спрогнозированными и фактически реализованными траекториями управляющих входных воздействий объекта, при этом допускаются регулирующие воздействия, направленные на подавление эффектов испытательных воздействий по ранее идентифицированным каналам регулирования, но с последующим исключением эффектов этих компенсирующих воздействий.

У этого способа существуют следующие недостатки:

- при оценке коэффициента передачи исследуемых каналов регулирования не учитываются ошибки регулирования и прогнозирования, что снижает достоверность полученных оценок;

- поскольку оператор не заинтересован в результатах исследования, а сложные объекты имеют много каналов регулирования, и для успешного управления требуется нанесение комплексных воздействий по ряду каналов регулирования, то зачастую оператор скрытно пользуется рядом каналов для компенсации эффектов пробных воздействий;

- в начале исследования сложного объекта все каналы регулирования не идентифицированы, что на этой стадии функционирования объекта не позволяет использовать этот способ.

Наиболее близким по технической сущности к предлагаемому является способ идентификации объектов, в котором пробный сигнал наносится на прогнозируемые рабочие управления для оценки характеристик каналов регулирования (см. «Нанесение экспериментальных воздействий на прогнозируемые рабочие управления / Веревкин В.И., Авдеев В.П., Лакунцов Б.А., Бурдонов Б.А., Катрич А.П. // Изв. ВУЗов. Черная металлургия. - 1975 - №6. С.163-166»). Он включает предварительную оценку статистических характеристик ошибок прогнозирования и регулирования, совместное прогнозирование рабочих управлений и вектора выходных величин объекта, нанесение пробного испытательного воздействия на прогнозируемые рабочие управления, фиксирование траектории изменения вектора выходных величин объекта во времени и оценку динамических характеристик исследуемых каналов регулирования по траектории изменения во времени разности между спрогнозированными и фактически полученными временными зависимостями вектора выходных величин объекта, по траектории изменения во времени разности между спрогнозированными и фактически реализованными временными зависимостями управлений и по статистическим характеристикам ошибок регулирования и прогнозирования.

К недостаткам относится, во-первых, разомкнутость обратных связей на время эксперимента, во-вторых, способ пригоден лишь для объектов с медленно изменяющимся состоянием. Т.е. можно производить идентификацию объекта при условии, что его состояние за время проявления эффекта пробного воздействия существенно не меняется. Если объект меняет свое состояние и если он обладает существенной нелинейностью, то ошибка динамических коэффициентов может стать соизмеримой с полезным сигналом. Поэтому обработку результатов эксперимента нужно осуществлять именно по типам ситуаций.

Задачей изобретения является повышение точности идентификации за счет определения типопредставительных ситуаций с соответствующими статистическими характеристиками ошибок регулирования и прогнозирования и за счет назначения соответствующего алгоритма прогнозирования траекторий изменения во времени управлений технологическим объектом и траекторий вектора его выходных величин.

Под типопредставительной ситуацией понимают предназначенную для отображения характерных фактических свойств и условий функционирования натурных объектов (систем управления в целом) взаимосвязанную совокупность структуры объекта; информационного отображения объекта; признаков, характеризующих внешние и внутренние условия функционирования объекта и области их допустимого изменения; структуры и значений параметров математических моделей каналов преобразования отклонений управляющих и контролируемых внешних воздействий в отклонения вектора выходных величин объекта, области их работоспособности; реализаций приведенных к выходу и (или) управляющему входу возмущающих воздействий или их аналогов; критериев эффективности прогнозирования.

В способе идентификации каналов регулирования объектов с нанесением пробных сигналов на прогнозируемые рабочие управления, включающем способ идентификации объектов, в котором пробный сигнал наносят на прогнозируемые рабочие управления для оценки характеристик каналов регулирования, предварительно классифицируют типопредставительную ситуацию и определяют величину управляющего воздействия для компенсации эффекта изменения типопредставительной ситуации на вектор выходных величин объекта.

Сущность изобретения состоит в следующем.

Объекты с существенно нелинейными свойствами, к которым относятся большинство промышленных объектов, значительно меняют свои динамические характеристики при изменении своих состояний. Состояние каждого такого объекта в динамике можно оценить по поведению внешних признаков, по которым можно сделать вывод о том, в какой типопредставительной ситуации он находится. Изменение свойств объекта вследствие изменения типопредставительной ситуации на объекте приводит к изменению его реакции на ранее поданный пробный сигнал. Одновременно в связи с изменением ситуации для обеспечения штатного режима работы объекта возникает необходимость экстренного вмешательства в его работу. Т.е. требуется изменение траектории управлений. Для того чтобы эти особенности проведения идентификации не приводили к существенным ошибкам оценок динамических характеристик каналов регулирования, целесообразно заранее определиться с изменениями траекторий управлений при переходе от одной типопредставительной ситуации к другой, а также учесть в траектории изменения во времени различие траекторий спрогнозированных и фактически полученных временных зависимостей вектора выходных величин объекта для компенсации реакции объекта на изменение своего состояния. Последнее обусловливается реакцией объекта на сумму изменения во времени двух воздействий: рабочих управлений и пробного сигнала. При резкой смене типопредставительной ситуации на объекте могут потребоваться изменения самих алгоритмов назначения параметров реакции объекта на изменение типопредставительной ситуации в функции параметров самих типопредставительных ситуаций. При этом со сменой типопредставительной ситуации выбирают алгоритм назначения параметров реакции объекта на изменение типопредставительной ситуации, по которому и определяют реакцию объекта на изменение типопредставительной ситуации. Предлагается дополнительно определить перечень классов возможных типопредставительных ситуаций и предварительно оценить требуемые реакции на эти ситуации, оперативно контролировать наличие и изменение типопредставительных ситуаций на объекте, корректировать траекторию прогнозируемого вектора выходных величин объекта, по отношению к которым и оценивать реакцию объекта на пробное воздействие. Реакцию объекта на пробное воздействие оценивают как изменение выходной величины объекта во времени после исключения эффекта действия изменения типопредставительной ситуации.

В качестве примера рассмотрим идентификацию кислородно-конвертерного процесса во время продувки стали. Во время одной продувки происходит изменение типопредставительной ситуации конвертерного процесса от сворачивания шлака до активного увеличения объема шлакометаллической эмульсии. В результате зеркало металла то покрывается толстым слоем шлака, то оголяется при сворачивании шлака. Реакция на отдачу сыпучих, изменение положения фурмы резко меняется.

На чертеже представлен график зависимости изменения выходной переменной объекта к функции изменения входной переменной в ходе активного эксперимента.

При изменении типопредставительной ситуации от типопредставительной ситуации 1 до типопредставительной ситуации 2 изменяется реакция объекта на ранее поданное воздействие, которое в рамках данной типопредставительной ситуации следует учесть одновременно с изменением ошибок регулирования и прогнозирования. В частности, кривая 1 - прогноз траектории изменений рабочих управлений, соответствующая типопредставительной ситуации 1. Кривая 2 - то же воздействие с наложенным на него пробным сигналом. Кривая 3 - прогноз траектории изменений рабочих управлений с учетом изменения типопредставительной ситуации. Кривая 4 - то же с наложенным пробным сигналом. Δ - разность входных величин объекта между прогнозом траектории изменений рабочих управлений до и после изменения типопредставительной ситуации. Кривая 5 - прогноз изменения выходной величины объекта во времени по исследуемому каналу регулирования, произведенный в момент времени t1, соответствует типопредставительной ситуации 1. Кривая 6 - предполагаемая траектория изменения этой же выходной величины объекта, которая имела бы место без изменения типопредставительной ситуации в результате проявления эффекта пробного сигнала. - разность между прогнозируемой выходной величиной объекта и выходной величиной после проявления эффекта пробного сигнала. Кривая 7 соответствует реакции объекта на рабочие управления, нанесенный пробный сигнал и изменение в момент времени t2 типопредставительной ситуации. Кривая 8 получается в результате смещения кривой 7 от дополнительного воздействия изменения рабочих управлений, произведенной в момент времени t2 при смене типопредставительной ситуации.

где а - коэффициент передачи;

P1(i) - пробный сигнал;

δ1(i) - ошибка прогнозирования;

ξ1(i) - ошибка регулирования;

Q1(i) - воздействие типопредставительной ситуации по исследуемому каналу регулирования;

Y2(i) - эффект изменения типопредставительной ситуации по другим каналам регулирования, проявленный на исследуемом выходе объекта;

P2(i) - компенсирующее управляющее воздействие (направленное на компенсацию эффектов действия Q1(i), Y2(i));

Δδ1(i) - изменение ошибок прогнозирования в связи со сменой типопредставительной ситуации;

Δξ1(i) - изменение ошибок регулирования в связи со сменой типопредставительной ситуации;

где δ2(i)=δ1(i)+Δδ1(i);

ξ2(i)=ξ1(i)+Δξ1(i);

Y2(i)=a2Q2(i)+a3Q3(i)+...anQn(i);

Q2(i) - воздействие типопредставительной ситуации по другому (2-му) каналу регулирования;

a2 - коэффициент передачи со 2-го канала регулирования на данный выходной сигнал.

Типопредставительная ситуация производит следующее воздействие:

Следовательно, коэффициент передачи рассчитывается следующим образом:

Время инерции и чистое запаздывание объекта определяются известным способом по траектории изменения во времени функции, приведенной в числителе формулы (5).

Способ идентификации каналов регулирования объектов с нанесением пробных сигналов на прогнозируемые рабочие управления, включающий предварительную оценку статистических характеристик ошибок прогнозирования и регулирования, совместное прогнозирование рабочих управлений и вектора выходных величин объекта, нанесение пробного испытательного воздействия на прогнозируемые рабочие управления, фиксирование траекторий изменения входных и выходных величин объекта во времени и оценку динамических характеристик исследуемых каналов регулирования по разности траектории изменения во времени спрогнозированных и фактически полученных временных зависимостей выходных величин объекта, по разности траектории изменения во времени спрогнозированных и фактически реализованных временных зависимостей управлений и по статистическим характеристикам ошибок регулирования и прогнозирования, отличающийся тем, что дополнительно определяют перечень возможных типопредставительных ситуаций и предварительно оценивают требуемые реакции объекта на эти ситуации, оперативно контролируют наличие и изменение типопредставительных ситуаций на объекте, корректируют траекторию прогнозируемого вектора выходных величин объекта, по отношению к которым оценивают реакцию объекта на пробное воздействие, выбирают алгоритмы назначения параметров реакции объекта на изменение типопредставительных ситуаций в функции параметров самих типопредставительных ситуаций.



 

Похожие патенты:

Изобретение относится к области контроля и может быть использовано для оценки состояния сложных многопараметрических объектов и систем различного назначения. .

Изобретение относится к контрольно-измерительной технике и может быть использовано при проектировании, производстве, испытаниях и эксплуатации радиоэлектронных изделий (РЭИ).

Изобретение относится к системам контроля и может быть использовано для контроля многофункциональных электронных систем разного назначения. .

Изобретение относится к способу и устройству для контроля датчика, наиболее предпочтительно датчика для измерения величины, характеризующей давление подаваемого в двигатель внутреннего сгорания (ДВС) воздуха.

Изобретение относится к авиационному приборосроению: к системам контроля систем угловой ориентации. .

Изобретение относится к области управления производственными процессами контроля и может быть использовано при построении систем контроля по различным параметрам однотипных изделий с путевой сортировкой.

Изобретение относится к области неразрушающего контроля несплошностей, неоднородностей и других дефектов материала изделия или группы изделий. .

Изобретение относится к области технической диагностики. .

Изобретение относится к области измерительной техники и может быть использовано в системах автоматизированного контроля и диагностики радиоэлектронных объектов.

Изобретение относится к области диагностики технических систем и может быть использовано при диагностике состояния технических систем различной степени сложности.

Изобретение относится к области испытательной техники и может быть использовано при комплексном полунатурном моделировании функционирования авиационных и космических объектов

Изобретение относится к области автоматического управления и регулирования
Изобретение относится к автоматическому управлению и регулированию и может быть использовано для построения математических моделей каналов регулирования действующих, циклических и непрерывных технологических нелинейных объектов, обладающих свойствами самоорганизации и систем управления с пониженной устойчивостью

Изобретение относится к области автоматики и вычислительной техники и может быть использовано для прогнозирования отказавшего элемента, расчета надежности устройства по остаточному ресурсу и определения времени до полной потери работоспособности устройства
Наверх