Способ неразрушающего контроля несущей способности железобетонных конструкций

Изобретение относится к области неразрушающего контроля на прочность строительных железобетонных конструкций. Способ заключается в следующем: определяют места возможных максимальных деформаций в стержнях арматуры и в бетоне, в этих местах устанавливают измерители деформаций, конструкцию нагружают испытательной механической статической нагрузкой, не превышающей предельного ее значения по прочности бетона или арматуры конструкции, и определяют значения деформаций. При этом нагружение конструкции выполняют в одном и том же месте 5-10 раз постоянной по значению статической механической нагрузкой при двух-пяти различных ступенях нагрузки. По результатам двух-пяти испытаний находят средние значения деформаций и соответственно два-пять значений доверительных интервалов измеренных деформаций, по которым строят график зависимости средних значений деформации от нагрузки и доверительные границы. При этом деформации измеряют одновременно в двух крайних стержнях арматуры и в двух крайних местах бетона на верхней грани сжатой зоны элемента в опасном сечении конструктивного элемента. По средним деформациям в арматуре и бетоне строят графики зависимости деформаций от нагрузки и доверительные границы, аппроксимируя их полиномами второй-пятой степени. На графике зависимости деформаций от нагрузки на оси абсцисс (деформаций) откладывают значение предельной деформации по нормативным документам по расчету железобетонных конструкций и графически определяют прочность (предельную нагрузку) конструкции по прочности арматуры и прочности бетона отдельно, принимая наименьшее из двух значений. Технический результат - повышение точности определения несущей способности конструкций. 2 ил.

 

Изобретение предназначено для строительных конструкций - балок, плит, рам из материалов и систем с нелинейной зависимостью между нагрузкой и деформациями, в частности железобетонных.

Цель изобретения - повышение точности определения несущей способности конструктивных элементов, мерой которой является значение предельной (наибольшей) нагрузки, не приводящей элемент или систему в состояние разрушения или к другому виду предельного состояния, например к превышению напряжениями или деформациями в рабочей арматуре или бетоне сжатой зоны элемента предельных значений, установленных нормами расчета железобетонных конструкций (Звездов А.И. Расчет прочности железобетонных конструкций при действии изгибающих моментов и продольных сил по новым нормативным документам / А.И.Звездов, А.С.Залесов // Бетон и железобетон, 2002. - № 2. - с.21-25).

Известен способ неразрушающего контроля несущей способности конструкций (патент № 2006814, кл. МПК 5 G 01 N 3/00, 1991 г.), заключающийся в том, что в испытуемой конструкции выявляются места с возможными наибольшими деформациями. В этих местах устанавливают средства измерения деформаций (тензометры, тензодатчики и др.) и конструкцию нагружают механической статической нагрузкой, не превышающей предельного ее значения, вычисленного теоретически, 5-10 раз, измеряя каждый раз деформации, и находят доверительный интервал среднего значения деформаций. Затем строят график зависимости между нагрузкой и перемещениями (прогибами) по двум точкам (в начале координат и в точке с координатами значения экспериментальной нагрузки, значения перемещения от этой нагрузки). Затем через точки доверительного интервала проводят прямые - доверительные границы параллельно прямой зависимости перемещения от нагрузки, проходящей через начало координат. По графику находят предельную нагрузку.

Недостатком этого способа является малая точность и ненадежность результатов, вызванная тем, что доверительные границы проводят по одной точке доверительного интервала параллельно прямой зависимости перемещения (прогиба) от нагрузки.

Наиболее близким к изобретению является способ неразрушающего контроля несущей способности строительных конструкций (патент № 2161788, кл. МПК 5 G 01 N 3/00, 2001 г.), заключающийся в том, что в конструкции выявляют места возможных наибольших линейных или угловых перемещений, в этих местах устанавливают измерители перемещений (прогибов) и конструкцию или конструктивный элемент нагружают испытательной механической нагрузкой, не превышающей предельного ее значения по прочности и жесткости элемента, и определяют значения наибольших перемещений, при этом нагружают конструкцию в одном и том же месте 5-10 раз, нагружение осуществляют не менее чем при трех различных ступенях нагрузки, по результатам трех средних значений перемещений и соответствующим нагрузкам строят прямую зависимости нагрузки от перемещений (деформаций), определяют три значения доверительных интервалов измерений перемещений, по точкам которых строят доверительные границы измеряемых перемещений, а прочность конструкции определяют с учетом средних значений перемещений и прямолинейных доверительных границ при линейной зависимости между нагрузкой и перемещениями.

Недостатком этого способа является ограниченная его применимость только для материалов и систем с линейной зависимостью между испытательной нагрузкой и перемещениями (прогибами).

Целью изобретения является расширение области применения способа определения несущей способности конструкций и конструктивных элементов из материалов с нелинейной зависимостью между нагрузкой и деформациями конструкции или конструктивного элемента, к которым относятся конструкции из железобетона и других композиционных материалов.

Это достигается тем, что в конструкции выявляют места возможных максимальных деформаций, в этих местах устанавливают измерители деформаций (тензометры, тензорезисторы и др.), конструкцию или конструктивный элемент нагружают испытательной механической статической нагрузкой, не превышающей предельного ее значения по прочности или предельной деформации в арматуре и бетоне, и определяют значения деформаций, при этом нагружают конструкцию в одном и том же месте 5-10 раз, нагружение осуществляют не менее чем при двух-пяти различных ступенях нагрузки, по результатам двух-пяти средних значений деформаций и соответствующим нагрузкам строят кривую, которую аппроксимируют полиномом второй-пятой степени с определением коэффициентов полинома с помощью метода наименьших квадратов, определяют не менее двух-пяти доверительных интервалов измерений деформаций, по точкам которых строят криволинейные доверительные границы измеряемых деформаций, аппроксимируя их полиномами второй-пятой степени с определением коэффициентов полинома с помощью метода наименьших квадратов, на оси абсцисс (деформаций) откладывают значение предельной деформации εпр по новым нормативным документам по расчету железобетонных конструкций (Звездов А.И. Расчет прочности железобетонных конструкций при действии изгибающих моментов и продольных сил по новым нормативным документам / А.И.Звездов, А.С.Залесов // Бетон и железобетон, 2002. - № 2. - с.21-25). Для бетона εпр=0,002, для арматуры εпр=Rss, где Rs - расчетное сопротивление арматуры растяжению, Еs - модуль упругости арматуры. В точке абсциссы (деформаций) восстанавливают перпендикуляр с предельными значениями деформаций εпр и находят точку пересечения его со средней кривой полинома, через полученную точку проводят прямую, параллельную оси абсцисс, и на пересечении ее с доверительными границами находят доверительные интервалы предельных деформаций εпр, а прочность (предельную нагрузку) конструкции или конструктивного элемента определяют графически по прочности арматуры и прочности бетона отдельно и принимают наименьшее из двух значений.

На фиг.1 показан график зависимости нагрузки от перемещения с доверительными границами 1-2-3-4 и 1'-2'-3'-4' и значение предельной нагрузки Fпр по прочности бетона. Аналогичный график строится для определения Fпр по прочности арматуры. На фиг.2 показаны в поперечном сечении плиты места установки измерителей перемещений в арматуре и бетоне.

Способ осуществляется следующим образом. Определяют опасное сечение конструктивного элемента, т.е. место наибольших возможных перемещений (деформаций), например в середине пролета балки или плиты, в этом месте на арматурных стержнях и на бетоне в сжатой зоне устанавливают измерители перемещений в двух крайних стержнях арматуры и в двух крайних местах бетона на верхней грани элемента. Предварительно конструкцию разгружают от эксплуатационной временной нагрузки. Защитный слой бетона у арматуры скалывают, шлифуют площадку на стержне арматуры для упора опор тензометров. Прикладывают первую ступень нагрузки и определяют перемещения (деформации), повторяя операции 5-10 раз для статистики. Затем прикладывают вторую большую ступень нагрузки и операцию испытаний повторяют для полинома второй степени. Число ступеней нагрузки равно степени принимаемого полинома. Вычисляют среднее значение деформации , средние квадратическне отклонения Si, доверительные интервалы по формуле , где t - коэффициент Стьюдента, n - число измерений. Полученные точки откладывают в осях координат (F-ε). Из точки 4 доверительного интервала εпр при i=1, 2, 3 опускают вертикаль (см. фиг.1) до пересечения с нижней доверительной границей 1'-2'-3'-4' и из точки пересечения проводят горизонталь до пересечения с осью нагрузки F. По точке пересечения с осью нагрузки F находят предельную нагрузку Fпр.

Диаграммы F-ε аппроксимируются полиномами второй-пятой степени, что рекомендовано в работе "Усиление при реконструкции зданий и сооружений" Р.С.Санжаровского, Д.О.Астафьева, В.М.Улицкого, Ф.Зибера. С.Петербург, 1998. - 633 с. на стр.375-376.

Способ неразрушающего контроля прочности железобетонных строительных конструкций, по которому определяют места возможных максимальных деформаций в стержнях арматуры и в бетоне, в этих местах устанавливают измерители деформаций, конструкцию нагружают испытательной механической статической нагрузкой, не превышающей предельного ее значения по прочности бетона или арматуры конструкции и определяют значения деформаций, при этом нагружение конструкции выполняют в одном и том же месте 5-10 раз постоянной по значению статической механической нагрузкой при двух-пяти различных ступенях нагрузки, по результатам двух-пяти испытаний находят средние значения деформаций и соответственно двух-пяти значений доверительных интервалов измеренных деформаций, по которым строят график зависимости средних значений деформации от нагрузки и доверительные границы, отличающийся тем, что деформации измеряют одновременно в двух крайних стержнях арматуры и в двух крайних местах бетона на верхней грани сжатой зоны элемента в опасном сечении конструктивного элемента, по средним деформациям в арматуре и бетоне строят графики зависимости деформаций от нагрузки и доверительные границы, аппроксимируя их полиномами второй-пятой степени, на графике зависимости деформаций от нагрузки на оси абсцисс (деформаций) откладывают значение предельной деформации по нормативным документам по расчету железобетонных конструкций и графически определяют прочность (предельную нагрузку) конструкции по прочности арматуры и прочности бетона отдельно, принимая наименьшее из двух значений.



 

Похожие патенты:
Изобретение относится к области медицины, а именно к неонатологии. .
Изобретение относится к области медицины, а именно к неонатологии. .
Изобретение относится к области медицины. .
Изобретение относится к области медицины. .

Изобретение относится к области медицины, в частности к гастроэнтерологии. .
Изобретение относится к клинической лабораторной диагностике и может быть использовано для оценки эффективности лечения тяжелых форм инфекционно-воспалительных заболеваний новорожденных.

Изобретение относится к области медицины, а именно к диагностике гепатита С, и касается определения комплекса HCV-антиген/антитело и включает способ определения комплекса, образуемого между HCV-антикоровым антигеном и NS3/4a-антителом, который может распознавать как HCV антигены, так и антитела, присутствующие в образце, при использовании единой твердой основы, а также и твердые подложки для применения в иммуноанализе.

Изобретение относится к области медицины, а именно к диагностике гепатита С, и касается определения комплекса HCV-антиген/антитело и включает способ определения комплекса, образуемого между HCV-антикоровым антигеном и NS3/4a-антителом, который может распознавать как HCV антигены, так и антитела, присутствующие в образце, при использовании единой твердой основы, а также и твердые подложки для применения в иммуноанализе.

Изобретение относится к области ветеринарной биохимии, в частности к биохимии углеводно-энергетического обмена. .

Изобретение относится к области экспериментальной биологии и медицины, в частности к судебной медицине. .

Изобретение относится к области дорожного строительства, в частности для лабораторного исследования сопротивления удару каменного материала

Изобретение относится к пищевой промышленности, а именно к устройству для определения момента свертывания молока

Изобретение относится к строительству и может быть использовано при испытании грунта на срез для определения угла внутреннего трения и сцепления с одновременным замером порового давления

Изобретение относится к медицине и, в частности, к лабораторным способам исследования и может быть использовано для количественного определения карбоксимиоглобина в гомогенате последа, рожденного женщиной, подвергшейся во время беременности длительному воздействию окиси углерода в атмосферном воздухе в концентрации, превышающей среднесуточную предельно допустимую концентрацию (ПДК), в период экологического неблагополучия - массивных лесных пожаров

Изобретение относится к области медицины, а именно к клинической физиологии, к способам неинвазивного определения газовых параметров крови для последующего использования их в функциональной диагностике для оценки текущего состояния кровообращения и газообмена человека в покое и при физической нагрузке, без использования процедуры зондирования полостей сердца и крупных сосудов

Изобретение относится к области медицины, а именно к клинической физиологии, к способам неинвазивного определения газовых параметров крови для последующего использования их в функциональной диагностике для оценки текущего состояния кровообращения и газообмена человека в покое и при физической нагрузке, без использования процедуры зондирования полостей сердца и крупных сосудов

Изобретение относится к медицинской микологии и клинической микробиологии
Наверх