Устройство для охлаждения сжиженного газа

Изобретение может быть использовано в криогенной технике, а также в установках для получения жидкого низкотемпературного диоксида углерода. Устройство содержит дроссельный вентиль, подводящий и отводящий трубопроводы. Устройство дополнительно снабжено фильтром, выполняющим функцию фильтрования и дросселирования, расположенным непосредственно за дроссельным вентилем, системой автоматического регулирования суммарного перепада давления на дроссельном вентиле и фильтре, трубопроводами продувки фильтра и запорной арматурой. Фильтр установлен на отводящем трубопроводе с возможностью отключения от него и подключения к трубопроводам продувки. Изобретение обеспечивает повышение чистоты сжиженного газа. 2 з.п. ф-лы, 1 ил.

 

Изобретение можно использовать в криогенной технике, а также в установках для получения жидкого низкотемпературного диоксида углерода на спиртовых заводах.

Известное устройство для охлаждения сжиженного газа (прототип) содержит дроссельный вентиль, подводящий и отводящий трубопроводы [1]. С помощью этого устройства диоксид углерода, предварительно сжатый в компрессоре до давления 6.5-7.0 МПа и сжиженный в конденсаторе при температуре 26-29°С, дросселируют до 0.8-1.2 МПа. При этом часть жидкости испаряется, за счет чего образующаяся парожидкостная смесь охлаждается до -46-35°С [2].

Обычно сжиженные газы содержат растворенные примеси, которые при охлаждении жидкости переходят в мелкодисперсное кристаллическое состояние. В частности, сжиженный диоксид углерода, получаемый из газов спиртового брожения, содержит воду и органические вещества. Присутствие кристаллов примесей в охлажденном продукте снижает его качество и надежность работы установки [1]. Описанное устройство не позволяет очищать охлаждаемый сжиженный газ от указанных примесей.

Задачей изобретения является повышение чистоты сжиженного газа.

Решение этой задачи достигается тем, что устройство для охлаждения сжиженного газа, содержащее дроссельный вентиль, подводящий и отводящий трубопроводы, согласно изобретению снабжено фильтром, выполняющим функцию фильтрования и дросселирования, расположенным непосредственно за дроссельным вентилем, трубопроводами продувки фильтра и запорной арматурой, причем фильтр установлен на отводящем трубопроводе с возможностью отключения от него и подключения к трубопроводам продувки. Устройство может иметь два фильтра, соединенных параллельно, а также систему автоматического регулирования суммарного перепада давления на дроссельном вентиле и фильтре, содержащую датчики давления в подводящем и отводящем трубопроводах, командный блок и исполнительные механизмы вентиля и запорной арматуры.

В этом устройстве кристаллы примесей, образующиеся при дросселировании, задерживаются фильтром, установленным на отводящем трубопроводе, причем фильтр одновременно выполняет две функции - фильтрования и дросселирования. По мере накопления примесей в фильтре его гидравлическое сопротивление постепенно нарастает, поэтому увеличивается и перепад давления на фильтре. Для обеспечения стабильной работы всей установки суммарный перепад давления на дроссельном вентиле и фильтре необходимо поддерживать постоянным. В течение определенного периода это осуществляется соответствующим изменением перепада давления на дроссельном вентиле путем увеличения степени его открытия. После полного открытия дроссельного вентиля фильтр необходимо отключать и подвергать регенерации. Для этого заявляемое устройство снабжено трубопроводами продувки и запорной арматурой. Регенерацию проводят продувкой фильтра нагретым газом, при этом накопившиеся в нем примеси испаряются и удаляются. Непрерывность работы установки можно обеспечить с помощью двух фильтров, соединенных параллельно и действующих поочередно: пока один из них фильтрует, другой подвергается регенерации. Для управления работой устройства целесообразно использовать автоматизированную систему, содержащую датчики давления в подводящем и отводящем трубопроводах, командный блок и исполнительные механизмы дроссельного вентиля и запорной арматуры.

Заявляемое устройство имеет следующие существенные преимущества перед известным.

1. При использовании одного и того же фильтра и одинаковой производительности установки период работы фильтра до очередной регенерации в заявляемом устройстве значительно больше, а степень очистки продукта выше.

2. Поскольку в заявляемом устройстве фильтр одновременно выполняет две функции - охлаждения (за счет дроссельного эффекта в самом фильтре) и очистки продукта, то энергозатраты на преодоление гидравлического сопротивления фильтра не являются потерями.

Заявляемое устройство показано на чертеже.

Оно содержит дроссельный вентиль 1, подводящий и отводящий трубопроводы 2 и 3, фильтр 4, трубопроводы продувки 5 и 6, запорную арматуру 7-10, а также систему автоматического регулирования суммарного перепада давления на дроссельном вентиле и фильтре, содержащую датчики давления 11 и 12, командный блок 13 и исполнительные механизмы вентиля и запорной арматуры. Параллельно фильтру 4 подключен второй такой же фильтр.

Устройство работает следующим образом.

Сжиженный газ с параметрами р1 и Т1, содержащий растворенные примеси, непрерывно подводится по трубопроводу 2 в дроссельный вентиль 1, где давление падает до значения р, жидкость закипает и ее температура понижается. При этом часть растворенных примесей кристаллизуется и образующаяся трехфазная смесь поступает в фильтр 4. Вследствие гидравлического сопротивления фильтра, в нем тоже происходит снижение параметров дросселируемого потока и кристаллизация примесей, причем кристаллы задерживаются в порах фильтра, поэтому парожидкостная смесь, отводимая из фильтра по трубопроводу 3 с конечными параметрами р2 и Т2, не содержит твердой фазы. Так как накопление кристаллов в фильтре приводит к росту его гидравлического сопротивления, увеличивается перепад давления на фильтре Δрф=р-p2. Для сохранения в ходе работы заданного значения разности температур ΔT=Т12 необходимо поддерживать постоянным суммарный перепад давления Δp=Δpф+Δpв=p1-p2, измеряемый датчиками 11 и 12, что обеспечивается автоматически уменьшением перепада давления Δрв=p1-р на дроссельном вентиле путем увеличения степени его открытия.

По достижении полного открытия дроссельного вентиля командный блок 13 вырабатывает сигналы, по которым клапаны 7 и 8 закрываются, а клапаны 9 и 10 на трубопроводах продувки открываются, одновременно производятся обратные действия с арматурой другого фильтра, в результате фильтр 4 отключается на регенерацию, а другой фильтр, уже подвергнутый регенерации, включается в работу. При этом степень открытия дроссельного вентиля также автоматически уменьшается до исходного значения. Далее описанный цикл работы повторяется.

Источники информации

1. Герасименко В.В. Производство диоксида углерода на спиртовых заводах. -М. Пищевая пром-сть, 1980, с.97-104, 20.

2. Алтунин В.В. Теплофизические свойства двуокиси углерода. - М. Издательство стандартов, 1975, с.303.

1. Устройство для охлаждения сжиженного газа, содержащее дроссельный вентиль, подводящий и отводящий трубопроводы, отличающееся тем, что оно дополнительно снабжено фильтром, выполняющим функцию фильтрования и дросселирования, расположенным непосредственно за дроссельным вентилем, системой автоматического регулирования суммарного перепада давления на дроссельном вентиле и фильтре, трубопроводами продувки фильтра и запорной арматурой, причем фильтр установлен на отводящем трубопроводе с возможностью отключения от него и подключения к трубопроводам продувки.

2. Устройство по п.1, отличающееся тем, что снабжено двумя фильтрами, соединенными параллельно.

3. Устройство по п.1, отличающееся тем, что система автоматического регулирования содержит датчики давления в подводящем и отводящем трубопроводах, командный блок и исполнительные механизмы дроссельного вентиля и запорной арматуры.



 

Похожие патенты:

Изобретение относится к установкам низкотемпературного разделения попутных нефтяных газов и может быть использовано в газовой промышленности на газоперерабатывающих заводах (ГПЗ) и установках комплексной подготовки газа к транспортировке.

Изобретение относится к способам подготовки, разделения и сжижения газообразных продуктов, включая природный газ, в частности в нефтегазовой промышленности. .

Изобретение относится к области криогенной техники, криогенных газовых машин, работающих по обратному циклу Стирлинга, и может быть использовано при создании гаражных заправочных комплексов получения сжиженного природного газа для автомобильного транспорта.

Изобретение относится к области криогенной техники, криогенных газовых машин, работающих по обратному циклу Стирлинга, и может быть использовано при создании индивидуальных или гаражных пунктов получения сжиженного природного газа для автомобильного транспорта.

Изобретение относится к области криогенной техники, криогенных газовых машин, работающих по обратному циклу Стерлинга, и может быть использовано при создании гаражных пунктов получения сжиженного природного газа для автомобильного транспорта.

Изобретение относится к комплексам сжижения природных газов, воздуха, азота, кислорода, размещаемым на средствах добычи природного газа (ПГ), морских стационарных платформах (МСП), плавучих платформах, плавучих заводах надводных и подводного базирования, ПЗ у берегов морей, на суше и в море и сопрягаемым с магистральными газопроводами, на комплексах промысловой разработки морских и прибрежных месторождений ПГ шельфа арктических морей, региона о.Сахалин, Азовского и Черного морей, а также судах-метановозах, судах газовозах, хранилищах и терминалах сжиженного ПГ (СПГ).

Изобретение относится к области технологии сжижения природного газа

Изобретение относится к области криогенной техники, криогенных газовых машин, работающих по обратному циклу Стирлинга, и может быть использовано при создании автомобильных заправочных станций

Изобретение относится к криогенной технике и может быть использовано преимущественно в энергетике при производстве жидкого криогенного топлива, например жидкого метана
Наверх