Способ подготовки препарата для диагностики изменений конъюнктивы глазного яблока


G01N1/30 - Исследование или анализ материалов путем определения их химических или физических свойств (разделение материалов вообще B01D,B01J,B03,B07; аппараты, полностью охватываемые каким-либо подклассом, см. в соответствующем подклассе, например B01L; измерение или испытание с помощью ферментов или микроорганизмов C12M,C12Q; исследование грунта основания на стройплощадке E02D 1/00;мониторинговые или диагностические устройства для оборудования для обработки выхлопных газов F01N 11/00; определение изменений влажности при компенсационных измерениях других переменных величин или для коррекции показаний приборов при изменении влажности, см. G01D или соответствующий подкласс, относящийся к измеряемой величине; испытание

Владельцы патента RU 2282843:

Кореняк Галина Викторовна (RU)
Житенко Наталья Алексеевна (RU)

Изобретение относится к области медицины, в частности к офтальмологии. Сущность способа заключается в подготовке препарата для цитологического исследования, для чего проводят соскоб эпителия бульбарной конъюнктивы, при этом соскобный материал с бульбарной конъюнктивы берут расслаивателем (ALKON) после предварительной местной анестезии раствором 0,5% дикаина и наносят на поверхность чистого обезжиренного предметного стекла, высушивают естественным путем, фиксируют 96% этиловым спиртом, окрашивают по Романовскому-Гимзе, затем краску смывают проточной водой, соскобы высушивают естественным путем. Цитологические препараты микроскопируют. Изобретение позволяет быстро подготовить материал к микроскопии для проведения диагностики.

 

Область техники, к которой относится изобретение

Изобретение относится к области медицины, в частности к офтальмологии, и может быть использовано для доклинической диагностики воздействий УФ-излучения на конъюнктиву глазного яблока.

Уровень техники

Известен способ диагностики конъюнктивального соскоба при фаринго-конъюнктивальной лихорадке, который заключается в цитоскопии конъюнктивального соскоба в комплексе с клиническими и вирусологическими исследованиями (см. А.А.Авдыкович Цитоскоскопия конъюнктивального соскоба при фаринго-конъюнктивальной лихорадке / Вестник офтальмологии. 1963. №1, стр.46-51).

Недостатком этого способа является использование дополнительных методов исследования: серологического и вирусологического для диагностики данного способа.

Известен способ цитологического исследования конъюнктивы при трахоме, который заключается в параллельных клинических и цитологических признаках трахомы (см. И.П.Маслова Изучение эпителия конъюнктивы век при трахоме с помощью электронного микроскопа / Вестник Офтальмологии. 1963. №3, стр.17-22).

Недостатком данного способа является использование высокоспециализированного оборудования - электронного микроскопа.

Наиболее близким по технической сущности и достигаемому положительному эффекту и принятый авторами за прототип является способ изучения структурных особенностей эпителиальных клеток при весеннем катаре, включающий соскоб эпителия бульбарной конъюнктивы, после предварительной местной анестезии раствором 0,5% дикаина, нанесенным на поверхность предметного стекла с последующим цитологическим исследованием (см. З.П.Волоховская Дистрофия ядер эпителиальных клеток сенсибилизированной конъюнктивы / Здравоохранение Туркменистана. 1982. №6, стр.16-18).

Недостатком данного способа является диагностика дистрофических поражений ядерных структур только у больных с сезонным аллергическим конъюнктивитом, и не учитываются дистрофические проявления переднего отрезка глаза под действием внешних факторов.

Раскрытие изобретения

Задачей предлагаемого изобретения является выявление последствий воздействия УФ-излучения на конъюнктиву глазного яблока.

Технический результат, который может быть получен с помощью предлагаемого изобретения, сводится к более точному, доступному, дешевому, быстрому диагностированию доклинических изменений конъюнктивы глазного яблока.

Технический результат достигается с помощью способа диагностики воздействий УФ-излучения на конъюнктиву глазного яблока, включающий соскоб эпителия бульбарной конъюнктивы, после предварительной местной анестезии раствором 0,5% дикаина, нанесение на поверхность предметного стекла, причем соскабливаемый материал высушивают естественным путем в течение 10-12 минут, фиксируют 96% спиртом путем однократного погружения, после чего проводят окрашивание в течение 15-17 минут по Романовскому-Гимзе, затем краску смывают проточной водой и соскобы высушивают естественным путем. Цитологические препараты микроскопируют при увеличении 7*20, а затем с использованием иммерсионной микроскопии при увеличении 7*90 с помощью бинокулярного микроскопа "Биолам Р-15".

Сущность способа диагностики воздействий УФ-излучения на конъюнктиву глазного яблока заключается в следующем.

Способ диагностики воздействий УФ-излучения на конъюнктиву глазного яблока включает цитологическое исследование соскобов эпителия бульбарной конъюнктивы у пациентов в 3 диагностических группах.

Способ проводят таким образом: соскобный материал с бульбарной конъюнктивы берут расслаивателем (ALKON) после предварительной местной анестезии раствором 0,5% дикаина и наносят на поверхность чистого обезжиренного предметного стекла. Соскобный материал высушивают естественным путем, фиксируют 96% этиловым спиртом, окрашивают по Романовскому-Гимзе. Затем краску смывают проточной водой, соскобы высушивают естественным путем. Цитологические препараты микроскопируют при увеличении 7*20, а затем с использованием иммерсионной микроскопии при увеличении 7*90 с помощью бинокулярного микроскопа "Биолан Р-15".

Осуществление изобретения

Примеры конкретного выполнения способа диагностики воздействий УФ-излучения на конъюнктиву глазного яблока.

Изучение влияния УФ-излучения на орган зрения в последнее десятилетие стало одним из приорететных направлений. Это объясняется рядом факторов: климатическими и региональными условиями, разрушением озонового слоя, распространением пищевых и лекарственных фотосенсибилизирующих агентов.

Поэтому вопросы профилактики поражения органа зрения вообще и в конкретном географическом регионе требуют индивидуального решения.

Имеются эпидемиологические, клинические и гистологические данные о связи времени воздействия УФ-излучения с возникновением изменений конъюнктивы: птеригиум, пингвекула (см. Я.П.Бергмансон, Т.М.Шелдон Профилактика повреждений глаза УФ-излучением "Глаз". 1999. №3, стр.23-27), (см. Clinicopathologic correlation of disease, Saint Lois, 1978 Chapter 10, p.474).

Пример 1

Способ диагностики воздействий УФ-излучения на конъюнктиву глазного яблока проводят таким образом.

Соскобный материал с бульбарной конъюнктивы берут расслаивателем (ALKON) после предварительной местной анестезии раствором 0,5% дикаина и наносят на поверхность чистого обезжиренного предметного стекла. Соскобный материал высушивают 2-3 минуты естественным путем, фиксируют 96% этиловым спиртом и окрашивают по Романовскому-Гимзе 4-5 минут.

Микроскопию цитологических препаратов проводят при увеличении 7*20, а затем с использованием иммерсионной микроскопии при увеличении 7*90 с помощью бинокулярного микроскопа "Биолан Р-15".

Способ диагностики воздействий УФ-излучения на конъюнктиву глазного яблока проводился у 86 пациентов (172 глаза), которые распредилились на 3 диагностические группы.

1 группа - 25 (29,06%) пациентов, мужчины - 11 (44%), женщины - 14 (56%) возраст 20-30 лет.

2 группа - 28 (32,5%) пациентов, мужчины - 12 (42,9%), женщины - 16 (57,1%), возраст 30-40 лет.

3 группа - 33 (38,4%) пациента, мужчины - 17 (51,5%), женщины - 16 (48,5%), возраст 40-55 лет.

1 группу составили пациенты, не имеющие жалоб на орган зрения и клинических признаков воспаления.

При микроскопии препараты эпителия конъюнктивы рассмотреть не удается, так как окраска неравномерная.

2 группу составили пациенты с клиническими признаками дистрофии конъюнктивы: пингвекула и птеригиум.

При микроскопии препараты также не достаточно окрашены для изучения.

В 3 группу вошли пациенты с клиническими признаками начальной заднекапсулярной и субкапсулярной катарактой.

При микроскопии неравномерное окрашивание препаратов затрудняет их диагностику.

В ходе проведения способа доклинической диагностики воздействия УФ-излучения на конъюнктиву глазного яблока по примеру 1 и сравнивая с нормой диагностику эпителия бульбарной конъюнктивы (см. И.П.Маслова / Изучение эпителия конъюнктивы век при трахоме с помощью электронного микроскопа / Вестник Офтальмологии. 1963, №3, стр.20) (см. Г.В.Егорова, А.А.Федоров / Кератоконус и синдром сухого глаза / Клиническая офтальмология, том 5, 2004, №1, стр.31), микроскопия соскобов эпителия бульбарной конъюнктивы не удалась, так как выявлена неравномерная окраска препаратов в 3 диагностических группах.

Пример 2

Способ диагностики воздействия УФ-излучения на конъюнктиву глазного яблока был проведен аналогично примеру 1, но отличается тем, что соскобный материал высушивают 4-5 минут и окрашивают по Романовскому-Гимзе 8-9 минут.

1 группу составили пациенты не, имеющие жалоб на орган зрения и клинических признаков воспаления.

При микроскопии препарат бледной окраски, клетки едва просматриваются, диагностика затруднена.

2 группу составили пациенты с клиническими признаками дистрофии конъюнктивы: пингвекула, птеригиум.

При микроскопии клетки окрашены недостаточно для точной диагностики.

В 3 группу вошли пациенты с клиническими признаками начальной заднекапсулярной и субкапсулярной катарактой.

При микроскопии препарат слабо окрашен, диагностически неинформативен.

В ходе проведения способа диагностики воздействия УФ-излучения на конъюнктиву глазного яблока по примеру 2 и сравнив с нормой, выявлено недостаточное окрашивание препаратов в 3 диагностических группах, что затрудняет проведение диагностики.

Пример 3

Способ диагностики воздействия УФ-излучения на конъюнктиву глазного яблока был проведен аналогично примеру 1, 2, но отличается тем, что соскобный материал высушивают естественным путем 10-12 минут, фиксируют 96% этиловым спиртом - однократным погружением, после чего окрашивают 15-17 минут по Романовскому-Гимзе, затем краску смывают проточной водой и соскобы высушивают естественным путем. Цитологические препараты микроскопируют при увеличении 7*20, а затем с использованием иммерсионной микроскопии при увеличении 7*90 с помощью бинокулярного микроскопа "Биолам Р-15".

1 группу составили пациенты с клинически здоровой конъюнктивой (25 пациентов). При микроскопии определялись пласты клеток плоского эпителия овальной и округлой формы, ядра нормохромные, хроматин распределен равномерно, мелкозернистый. Ядро овальной или округлой формы, с четкими контурами, расположено в средней части клетки или несколько смещено к суженному концу. Размер ядер составляет более половины диаметра клеток. Цитоплазма окрашена интенсивно, гомогенна, с четкими контурами. Иногда в цитоплазме определяется зона просветления вокруг ядра или вакуоли. Границы клеток четкие, иногда ровные с одной из сторон. Также встречаются скопления и пласты клеток с отростками цитоплазмы (клетки-"паучки").

На основании проведения способа диагностики воздействия УФ-излучения на конъюнктиву глазного яблока, 1 группу составили пациенты с практически здоровой конъюнктивой; 2 группу составили пациенты с клиническими признаками дистрофии конъюнктивы: пингвекула, птеригиум.

Цитологическая картина у пациентов с птеригиумом (16 пациентов): в препаратах наряду с неизмененными пластами клеток плоского эпителия встречаются разрозненно лежащие и в пластах клетки с признаками дистрофии: округлой, овальной, вытянутой формы. Ядра пикнотичные, округлые, овальные, расположенные центрально. Цитоплазма окрашена слабо, гомогенная, вакуолизированная.

Цитологическая картина у пациентов с пингвекулой (12 пациентов): в препарате пласты клеток плоского эпителия овальной и округлой формы, ядра нормохромные и с признаками дистрофии: округлые, овальные, пикнотичные, расположены центрально, хроматин распределен равномерно, мелкозернистый. Цитоплазма гомогенна, с четкими контурами. Иногда в цитоплазме определяется зона просветления вокруг ядра или вакуоли. Границы клеток четкие, иногда ровные с одной из сторон.

На основании проведения способа диагностики воздействия УФ-излучения на конъюнктиву глазного яблока выявлены дистрофические проявления во 2 группе пациентов.

В 3 группу вошли пациенты с клиническими признаками начальной заднекапсулярной и субкапсулярной катарактой.

При микроскопии эпителия конъюнктивы у пациентов с кортикальной (15) и заднекапсулярной (18) катарактой отмечались пласты клеток овальной и округлой формы, увеличение размеров эпителиальных клеток и ядер, появляются неровности контуров ядер у части клеток, хроматин распределен равномерно или с участками разряжения, в некоторых клетках определяется вакуолизация, цитоплазма окрашена равномерно.

На основании проведения способа диагностики воздействия УФ-излучения на конъюнктиву глазного яблока в 3 группе пациентов выявляются признаки пролиферирующего плоского эпителия, о чем свидетельствует увеличение размеров эпителиальных клеток и ядер, появление неровности контуров ядер.

В ходе проведения способа диагностики воздействия УФ-излучения на конъюнктиву глазного яблока по примеру 3, сравнивая с нормой эпителия конъюнктивы, выявлены наиболее оптимальные условия окрашивания препаратов по Романовскому-Гимзе для 3 диагностических групп.

Пример 4

Способ диагностики воздействия УФ-излучения на конъюнктиву глазного яблока был проведен аналогично примеру 1, 2, 3, но отличается тем, что соскобный материал высушивают в термостате 8-9 минут, фиксируют 96% этиловым спиртом - однократным погружением, после чего окрашивают 25-27 минут по Романовскому-Гимзе.

1 группу составили пациенты с клинически здоровой конъюнктивой. На цитограмме клетки и ядра гиперхромны, диагностика затруднена.

Во 2 группу вошли пациенты с клиническими признакам дистрофии конъюнктивы: пингвекула и птеригиум.

При микроскопии учитывать диагностические изменения соскобного материала не удается, так как интенсивная окраска препарата.

В 3 группу вошли пациенты с клиническими признаками начальной заднекапсулярной и субкапсулярной катарактой.

При микроскопии гиперхромия ядра и цитоплазмы эпителиоцитов не дает четкой диагностической картины.

В ходе проведения способа диагностики воздействия УФ-излучения на конъюнктиву глазного яблока по примеру 4 выявлено интенсивное окрашивание препаратов в 3 диагностических группах, что затрудняет анализ микроскопии.

Таким образом, способ достоверной, доклинической диагностики воздействий УФ-излучения на конъюнктиву глазного яблока дает пример 3 и является наиболее оптимальным.

Предлагаемое изобретение по сравнению с прототипом и другими известными техническими решениями имеет следующие преимущества:

- точность диагностики изменений конъюнктивы глазного яблока под воздействием УФ-излучения в 3 возрастных группах;

- экономически недорогое выполнение способа диагностики воздействий Уф-излучения на конъюнктиву глазного яблока;

- быстрота выполнения способа диагностики воздействий УФ-излучения на конъюнктиву глазного яблока;

- доклиническая диагностика изменений эпителия бульбарной конъюнктивы.

Способ подготовки препарата для диагностики изменений конъюнктивы глазного яблока, включающий соскоб эпителия бульбарной конъюнктивы после предварительной местной анестезии раствором 0,5% дикаина, нанесение на поверхность предметного стекла с последующим цитологическим исследованием, отличающийся тем, что соскабливаемый материал высушивают естественным путем в течение 10-12 мин, фиксируют 96% этиловым спиртом, путем однократного погружения, после чего проводят окрашивание в течение 15-17 мин по Романовскому-Гимзе, затем краску смывают проточной водой и высушивают естественным путем, после чего проводят цитологическое исследование.



 

Похожие патенты:

Изобретение относится к бурению и изучению скважин во льду и подледных водоемов в целях микробиологических, геохимических и других видов исследований. .
Изобретение относится к области медицины и может быть использовано для выделения из крови больных сахарным диабетом гельминтов, личинок гельминтов. .

Изобретение относится к области медицины, в частности к лабораторной диагностике, и предназначено для микроскопических исследований биологических материалов для выявления форменных элементов клеток, многих микроорганизмов.

Изобретение относится к стационарным устройствам периодического отбора проб жидкости и газа из трубопроводов и емкостей, в том числе из выкидных линий добывающих скважин.

Изобретение относится к области анализа материалов путем определения их химических и физических свойств, конкретно к получению или подготовке образцов для исследования путем их разбавления, распыления или смешения.

Изобретение относится к технике отбора проб и может быть использовано для определения зрелости бахчевых культур, например арбузов. .

Изобретение относится к устройству для отбора проб из потока обработки в виде шлама с использованием кинематической энергии потока обработки. .

Изобретение относится к области газового анализа и может быть использовано для отбора проб микропримесей веществ в газах при обнаружении аварийных выбросов и локализации утечек паров токсичных и горючих веществ на производстве, поиске скрытых закладок взрывчатых и наркотических веществ на таможенных пунктах досмотра, аэропортах, вокзалах, производственных и жилых помещениях, определении мест хранения запрещенных и опасных веществ.

Изобретение относится к гидрогеологическим исследованиям скважин и предназначено для отбора глубинных проб жидкости в скважинах. .

Изобретение относится к аналитической химии и может быть использовано при пробирном анализе партии рядовых проб золотосодержащей руды

Изобретение относится к аналитической химии и может быть использовано в качестве средства метрологического обеспечения методик выполнения измерений при определении содержания нефтепродуктов в водных средах

Изобретение относится к медицине, паразитологии, и касается способов оценки состояния печени при лечении описторхоза в эксперименте

Изобретение относится к области анализа материалов путем определения их химических и физических свойств, а именно к подготовке образцов для исследования путем их разбавления, распыления и смешивания

Изобретение относится к области анализа материалов путем определения их химических и физических свойств, а именно к подготовке образцов для исследования путем их разбавления, распыления и смешивания

Изобретение относится к устройствам для измерения уровня легкоиспаряющейся бесцветной жидкости и отбора ее проб, например в резервуарах, цистернах или колодцах

Изобретение относится к технологии и технике отбора проб жидкости из трубопровода и может быть использовано в нефтедобывающей и других отраслях промышленности, где требуется высокая точность определения параметров перекачиваемой по трубопроводам жидкости

Микротом // 2287143
Изобретение относится к микротому со станиной, снабженной узлом держателя объекта, предназначенным для проведения режущего движения в вертикальном направлении, и с узлом держателя ножа для режущего элемента, представляющего собой нож или лезвие в сочетании с держателем лезвия

Изобретение относится к технике пробоотбора и позволяет по специальному алгоритму получать осредненные пробы питьевой, поверхностной, подземной и сточной воды для последующего определения в них средней за время экспонирования объемной активности трития в форме соединений НТО, Т2О и DTO с целью оценки величины ожидаемой эффективной дозы облучения, обусловленной пероральным поступлением трития
Наверх