Способ оценки склонности трубных марок сталей к стресс-коррозии

Изобретение относится к коррозионным испытаниям, а именно к испытаниям трубных сталей к стресс-коррозии. Способ оценки склонности трубных марок сталей к стресс-коррозии включает воздействие на испытуемый образец водородсодержащей коррозионной среды. Предварительно на испытуемый образец алмазом наносят отпечатки, прикладывают нагрузку в пределах 0,85-0,95 от предела текучести стали и определяют по формуле коэффициент неравномерности поверхностной микродеформации (КH), по которому оценивают склонность стали к стресс-коррозии. В качестве водородсодержащей коррозионной среды используют 3% раствор хлорида натрия, подкисленный соляной кислотой до рН 2-2,3. Техническим результатом изобретения является повышение коррозионной стойкости магистральных трубопроводов в условиях, вызывающих стресс-коррозию. 1 з.п. ф-лы, 1 ил.

 

Изобретение относится к коррозионным испытаниям, а именно к испытаниям трубных сталей к стресс-коррозии.

Известен способ оценки сталей к коррозионному растрескиванию под напряжением методом медленной деформации с постоянной скоростью, заключающийся в том, что испытуемый образец помещают в суспензию грунта с места аварии газопровода и растягивают с постоянной скоростью до разрушения образца (см. С.А.Лубенский. Автореферат диссертации на соискание ученой степени кандидата технических наук, Москва, 1994, ВНИИГаз).

Недостатком данного способа является отсутствие точного механизма разрушения, т.к. изменение механических свойств и разрушение газопроводов происходит в локальных областях.

Наиболее близким к заявляемому техническому решению является способ определения стойкости металла подземных трубопроводов к стресс-коррозии, включающий воздействие на испытуемый образец водородсодержащей коррозионной среды (см. патент РФ № 2222000, МПК7 G01N 17/00, опубл. 20.01.2004 г.).

Недостатком прототипа является невозможность определения склонности стали к стресс-коррозии.

Задачей технического решения является повышение коррозионной стойкости магистральных трубопроводов в условиях, вызывающих стресс-коррозию.

Технический результат заключается в определении неравномерности поверхностной микродеформации испытуемого образца в процессе нагружения при воздействии коррозионной среды.

Решение технической задачи достигается тем, что в известном способе оценки склонности трубных марок сталей к стресс-коррозии, включающим воздействие на испытуемый образец водородсодержащей коррозионной среды, согласно изобретению, предварительно на испытуемый образец алмазом наносят отпечатки, прикладывают нагрузку в пределах 0,85-0,95 от предела текучести стали, определяют коэффициент неравномерности поверхностной микродеформации (КH) по формуле:

где Σразб. - общая сумма разброса деформации участков между отпечатками,

Δli - относительное удлинение между отпечатками,

- общая сумма удлиненных участков между отпечатками,

и по коэффициенту КН оценивают склонность стали к стресс-коррозии: при значении КН в пределах 0,05÷0,12, марка трубной стали не склонна к КРН, при значении КН в пределах 0,12÷0,17 на трубной стали появляются стресс-коррозионные повреждения, не представляющие опасности в условиях длительной эксплуатации, а при значении КН более 0,17 марка трубной стали склонна к КРН, а в качестве водородсодержащей коррозионной среды используют 3% раствор хлорида натрия подкисленный соляной кислотой до рН 2-2,3.

Данный способ позволит повысить коррозионную стойкость магистральных трубопроводов в условиях, вызывающих стресс-коррозию.

Сущность способа поясняется чертежом, на котором изображено измерение относительного удлинения участков между отпечатками и таблицей экспериментальных данных.

Пример конкретного осуществления способа.

Предварительно на поверхность испытуемого образца наносят отпечатки алмазной пирамидой с помощью микротвердомера ПМТ-3. Контролируемым геометрическим параметром является линейный размер l между двумя отпечатками. Отпечатки наносят на участке 10 мм с базой 200 мкм. На чертеже изображен участок между двумя отпечатками 1 и 2, где l1 - расстояние между отпечатками 1 и 2 до начала испытаний, а l21 - расстояние между отпечатками 1 и 2' после проведения испытаний.

Образцы для испытаний вырезают из листового проката в направлении, перпендикулярном прокату. Механическую обработку проводят при режимах, исключающих нагрев и наклеп в рабочей области. На поверхности образца для нанесения отпечатков полируют горизонтальную площадку шириной 1,5 мм в продольном направлении. Шероховатость поверхности не более 0,25 мкм.

Измерение параметра l осуществляют бесконтактным оптическим методом с точностью ±0,3 мкм. После измерения параметра l на поверхность образца с нанесенными отпечатками наносят слой коррозионно-стойкой краски шириной 1-2 мм, покрывающий линию отпечатков. Испытуемый образец помещают в коррозионную среду, представляющую собой 3% раствор NaCl подкисленный соляной кислотой до рН 2-2,3 и нагружают в пределах 0,85 -0,95% от предела текучести стали.

При снятии образца проводят повторный замер параметра l между отпечатками и вычисляют значение Δl для каждого участка по формуле

Изменение линейного размера l является геометрическим критерием оценки гетерогенности деформативных свойств стали с течением времени.

Для объективной оценки исследуемых сталей при различных видах испытаний вводят коэффициент КН, численно показывающий степень неравномерности поверхностной микродеформации.

Общую сумму деформаций между отпечатками определяют по формуле

Среднее значение деформации одного участка определяют

Общую сумму разброса деформации определяют по формуле

Коэффициент неравномерности поверхностной деформации определяют по формуле

Значение КН является численным критерием склонности марки стали к стресс-коррозии и сведено в таблицу, из которой видно, что при значении КН в пределах 0,05÷0,12, марка трубной стали не склонна к КРН. При значении КН в пределах 0,12÷0,17 на трубной стали появляются стресс-коррозионные повреждения, не представляющие опасности в условиях длительной эксплуатации. При значении КН более 0,17 марка трубной стали склонна к КРН.

Использование предлагаемого способа оценки склонности трубных марок сталей к стресс-коррозии позволит по сравнению с прототипом повысить коррозионную стойкость магистральных трубопроводов в условиях, вызывающих стресс-коррозию.

Таблица
Марка сталиКННаличие стресс-коррозионных трещинСклонность к КРН
1234
Э-12 (армко-железо)0,05-0,12нет-
Х700,12-0,17есть+
09Г2С0,17-0,21есть+

1. Способ оценки склонности трубных марок сталей к стресс-коррозии, включающий воздействие на испытуемый образец водородсодержащей коррозионной среды, отличающийся тем, что предварительно на испытуемый образец алмазом наносят отпечатки, прикладывают нагрузку в пределах 0,85-0,95 от предела текучести стали, определяют коэффициент неравномерности поверхностной микродеформации (КH) по формуле

где Σраэб - общая сумма разброса деформации участков между отпечатками;

Δli - относительное удлинение между отпечатками;

- общая сумма удлиненных участков между отпечатками,

и по коэффициенту КH оценивают склонность стали к стресс-коррозии: при значении КH в пределах 0,05÷0,12 марка трубной стали не склонна к КРН, при значении КH в пределах 0,12÷0,17 на трубной стали появляются стресс-коррозионные повреждения, не представляющие опасности в условиях длительной эксплуатации, а при значении КH более 0,17 марка трубной стали склонна к КРН.

2. Способ оценки по п.1, отличающийся тем, что в качестве водородсодержащей коррозионной среды используют 3%-ный раствор NaCl, подкисленный соляной кислотой до рН=2-2,3.



 

Похожие патенты:

Изобретение относится к устройствам измерения, оценки качества и надежности покрытий, а именно к устройствам оценки качества и надежности покрытий на поверхности шариков с использованием бытовых стиральных машин, центрифуг с вертикальной осью вращения, содержащим автобалансирующие устройства с перемещением корректирующей массы.

Изобретение относится к области испытаний материалов, в частности к определению коррозионной стойкости материалов для тонкостенных элементов конструкций, в частности мембран на металлической основе.

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано для диагностики технического состояния трубопроводов. .

Изобретение относится к испытательной технике и может быть использовано для определения скорости атмосферной коррозии металлов. .

Изобретение относится к способам защиты изделий и материалов от коррозии и эрозии, находящихся в условиях механической нагрузки, и может быть использовано как в двигателестроении, так и при техническом обслуживании машин, укомплектованных высокофорсированными дизелями и гидросистемами, работающими в тяжелых условиях эксплуатации, а также силовых энергетических установок.
Изобретение относится к химии, в частности к контролю качества воды, содержащей органические примеси, и может найти применение при количественной оценке свойств органических соединений в водных растворах.

Изобретение относится к измерительной технике и может быть использовано для определения процесса коррозии образцов из конструкционных сплавов в потоке теплоносителя.
Изобретение относится к области коррозионных испытаний, в частности к способам испытания защитных жаростойких покрытий на высокотемпературную коррозионную долговечность, и может быть использовано для выбора покрытия, обладающего наибольшим ресурсом.
Изобретение относится к измерительной технике и может применяться для выявления степени коррозионного повреждения, в частности, петель анкерных плит и U-образных болтов подземного анкерного узла оттяжек опор высоковольтных линий (ВЛ)

Изобретение относится к способам исследования коррозии трубопроводов и цилиндрических сосудов в агрессивных средах гравиметрическим методом с помощью образцов-свидетелей и может быть использовано для оценки скорости коррозионного износа внутренней поверхности трубопроводов и технологического оборудования со стороны рабочих сред

Изобретение относится к испытаниям материалов, а именно к способам определения защитной способности цинковых покрытий, и может быть использовано для оценки долговечности хроматированных цинковых покрытий на стали в приморских атмосферах районов эксплуатации

Изобретение относится к области анализа материалов, преимущественно моторных масел (ММ), в частности к оценке их коррозионной активности (КА), и может быть использовано в химической и нефтехимической промышленности для определения уровня противокоррозионных свойств (ПКС) ММ и их дифференциации при допуске к производству и применению в технике

Изобретение относится к приборам систем коррозионных измерений на подземных стальных сооружениях для определения опасности электрохимической коррозии и контроля эффективности действия электрохимической защиты

Изобретение относится к устройствам измерения, оценки износа покрытий и качества поверхностей деталей машин, а именно к бытовым стиральных машинам, центрифугам с вертикальной осью вращения, содержащим автобалансирующие устройства с перемещением корректирующей массы

Изобретение относится к технике электрохимической защиты от коррозии подземных металлических сооружений, в частности к средствам катодной защиты и коррозионного мониторинга подземных трубопроводов

Изобретение относится к области измерительной техники и может быть использовано для измерения скорости коррозии и контроля коррозионной активности сред при исследовании процессов коррозии, протекающих, в том числе, в трубопроводах, технологических аппаратах, грунтах

Изобретение относится к датчикам контроля коррозионной активности среды, погружаемым в контролируемую коррозионно-активную среду, может быть использовано для измерения и контроля коррозионной активности сред при исследовании процессов коррозии, идущих в трубопроводах, технологических аппаратах, грунтах

Изобретение относится к устройствам и способам оценки эффективности действия ингибиторов коррозии металлов и их сплавов, а именно к бытовым стиральным машинам, центрифугам с вертикальной осью вращения, содержащим автобалансирующие устройства с перемещением корректирующей массы
Наверх