Способ количественного определения роданид ионов

Изобретение относится к аналитической химии. Анализируемую пробу обрабатывают сульфатом меди, обрабатывают раствором N-этил-N(2-гидроксиэтил)-1,4-фенилендиаммония сульфат моногидрата, в продукт реакции добавляют ацетон, выжидают 10 минут, разбавляют водой и фотометрируют. Технический результат - повышение чувствительности определения. 2 табл.

 

Изобретение относится к аналитической химии, а именно к способам определения роданид ионов, и может быть применено в практике центральных заводских лабораторий, контрольно-аналитических лабораторий химических предприятий, химико-токсикологических лабораторий. Способ относится к числу массовых.

Известен способ определения роданид ионов, заключающийся в обработке анализируемой пробы раствором соляной кислоты и хлоридом железа (III) с последующим фотометрированием образующегося окрашенного раствора. [Whiston T.G., Cherry G.W. - Analyst, 1962, v.87, р.819].

Способ характеризуется простотой, однако окраска комплекса неустойчива.

Известен пиридин-пиразолоновый, пиридин-бензидиновый и пиридин-сульфанилатный способы определения роданид ионов, основанные на окисление роданид ионов, а затем взаимодействии с пиридином в присутствии соответствующих веществ. [Ю.Ю.Лурье, А.И.Рыбникова, Химический анализ производственных сточных вод, Госхимиздат, 1963, стр.99, 102].

Способ характеризуется высокой чувствительностью, но и длительностью приготовления растворов реагентов, растворы реагентов не устойчивы во времени.

Известен способ фотометрического определения роданид ионов, основанный на его взаимодействии с рением, с образованием окрашенного комплекса. [Neas R.E., Guyon J.C. - Analyt. Chem., 1969, v.41, р.1470].

Известен способ фотометрического определения роданид ионов, основанный на взаимодействии роданид ионов с ртутью и хинолином, образуется окрашенный комплекс, который после экстрагируют и фотометрируют. [Einaga H., Ishi Н., Iwasaki I. - Talanta, 1973, v.20, р.1017].

Способ характеризуется трудоемкостью.

Наиболее близким по техническому решению и достигаемым результатам является способ определения роданид ионов путем обработки анализируемой пробы раствором меди и пиридином с последующим фотометрированием образующегося окрашенного раствора. [Aldriadge W.A. - Analyst, 1945, v.70, р.474].

Способ характеризуется недостаточно высокой чувствительностью.

Задачей предлагаемого изобретения является повышение чувствительности способа.

Поставленная задача достигается с помощью предлагаемого способа, который заключается в том, что анализируемую пробу обрабатывают сульфатом меди, обрабатывают раствором N-этил-N(2-гидроксиэтил)-1,4-фенилендиаммония сульфат моногидратом, в реакционную среду добавляют ацетон, разбавляют водой и фотометрируют.

Сопоставительный анализ заявленного решения с прототипом показывает, что заявляемый способ отличается от известного тем, что в качестве цветореагента применяют раствор N-этил-N(2-гидроксиэтил)-1,4-фенилендиаммоний сульфат моногидрат, а в образующийся окрашенный продукт добавляют ацетон.

Способ осуществляется следующим образом: анализируемую пробу обрабатывают сульфатом меди, обрабатывают раствором N-этил-N(2-гидроксиэтил)-1,4-фенилендиаммония сульфат моногидратом, в реакционную среду добавляют ацетон, разбавляют водой и фотометрируют.

Способ иллюстрируется следующим примером.

Пример

Количественное определение роданид ионов

Построение калибровочного графика

В химические стаканы емкостью 50 мл вносили 0,5; 1,0; 1,5; 2,0; 2,5; 3,0; 3,5; 4,0; 4,5; 5,0 мл стандартного раствора SCN--ионов. Во все химические стаканы вносили по 1 мл водного раствора сульфата меди (Cu2+ 1 мг/мл), по 5 мл 0,02% водного раствора N-этил-N(2-гироксиэтил)-1,4-фенилендиаммония сульфат моногидрата и 7 мл ацетона. Далее окрашенные растворы оставляли на 10 минут. По истечении указанного времени окрашенные растворы переносили в мерные колбы емкостью 25 мл и объемы растворов доводили дистиллированной водой до метки, тщательно перемешивали и измеряли оптическую плотность полученных окрашенных растворов с помощью фотоэлектроколориметра КФК-3 (λ=528 нм; длина рабочего слоя кюветы 5 см) на фоне контрольного опыта. Методом наименьших квадратов рассчитывают уравнение калибровочного графика, которое в данном случае имеет вид:

D=0,01698·C+0,0005,

где D - оптическая плотность,

С - концентрация роданида в фотометрируемом растворе, мкг/мл.

Подчинение основному закону светопоглощения (Бугера-Ламбера-Бера) наблюдается в интервале концентраций 15-45 мкг/мл.

Методика количественного определения

Согласно разработанной методике точные навески KSCN растворяли дистиллированной водой в мерных колбах емкостью 100 мл, затем объемы растворов в каждой колбе доводили до метки. После тщательного перемешивания в химические стаканы емкостью 50 мл вносили по 1 мл полученных растворов KSCN, прибавляли 1 мл раствора сульфата меди (Cu2+ 1 мг/мл), затем вносили 5 мл 0,02% водного раствора N-этил-N(2-гидроксиэтил)-1,4-фенилендиаммония сульфат моногидрата и по 7 мл ацетона. Окрашенные растворы оставляли на 10 минут. По окончании указанного времени окрашенные растворы переносили в мерные колбы емкостью 25 мл и объем растворов доводили дистиллированной водой до метки. Оптическую плотность окрашенных растворов измеряли с помощью фотоэлектроколориметра КФК-3 (λ=528 нм, рабочая длина кюветы 5 см). В качестве растворов сравнения применяли смеси всех перечисленных выше реактивов, взятых в соответствующих объемах. Количественное содержание роданид ионов определяют по уравнению калибровочного графика и пересчитывают на навеску. Результаты определения и метрологические характеристики представлены в таблице 1.

Предлагаемый способ по сравнению с известным повышает чувствительность определения (открываемый минимум уменьшается с 25 мкг/мл до 15 мкг/мл). Сравнительная характеристика предлагаемого и известного способов представлена в таблице 2.

Таблица 1

Результаты количественного определения роданида
№ п/пВзято роданид ионов на анализ, мкгНайдено по уравнению калибровочного графикаМетрологические характеристики

%
мкг%
1.2524,798,80

S2=3,990

S=1,997



Jp=2,483

A=2,487

M=99,87±2,483
2.3030,0100,00
3.3535,9102,57
4.4040,0100,00
5.4544,198,00
Таблица 2

Сравнительная характеристика предлагаемого и известного способов
ПоказателиПредлагаемый способИзвестный способ
1. Чувствительность15 мкг/мл25 мкг/мл

Способ количественного определения роданид ионов путем предварительной обработки анализируемой пробы сульфатом меди, обработки цветореагентом с последующим фотометрированием образующегося окрашенного раствора, отличающийся тем, что в качестве цветореагента применяют раствор N-этил-N(2-гидроксиэтил)-1,4-фенилендиаммоний сульфат моногидрата, а после добавляют ацетон.



 

Похожие патенты:

Изобретение относится к определению металлоорганических соединений с использованием химического сенсора, включающего неорганический, органический или полимерный носитель, нерастворимый в образце, подлежащем анализу, индикатор, способный к обратимой реакции с металлоорганическим соединением, при этом продукт реакции обладает характеристическим спектром поглощения, отражения или излучения в диапазоне длин волн от 150 до 15000 нм, и способный к созданию связи с носителем путем физического включения (захвата), адсорбции, абсорбции, растворения или же путем химической связи (как электростатической, так и ковалентной), и оптический сенсор, выполненный с возможностью измерения характеристик поглощения, отражения или излучения света приведенным в действие носителем при характеристической длине волны и с возможностью преобразования измеренной характеристики в единицы концентрации металлоорганического соединения, присутствующего в растворе.

Изобретение относится к получению химического датчика. .

Изобретение относится к измерительной технике. .

Изобретение относится к области аналитического приборостроения, а именно к приборам контроля состава жидких сред, включая сточные и промывные воды технологических производств Изобретение может быть использовано при разработке и создании фотометрических, например фотокалориметрических, анализаторов, используемых для определения концентрации при любом рН, и для автоматического управления системой очистки промывных и сбросовых сточных вод гальванического производства, содержащих ионы шестивалентного хрома и пр.

Изобретение относится к медицинской технике, Цель изобретения - повышение точности. .

Изобретение относится к технической физике и может быть использовано в спектральном приборостроении. .

Изобретение относится к спектрофотометрическим способам определения германия и позволяет повысить чувствительность анализа. .

Изобретение относится к аналитической химии, конкретно к способам фотометрического определения микроколичеств меди, и может быть использовано для анализа сплавов и концентратов цветных металлов.

Изобретение относится к аналитической химии, а именно к способам определения муравьиной кислоты
Изобретение относится к определению и контролю содержания ртути в водных растворах и может быть использовано для контроля содержания катионов ртути в водных растворах

Изобретение относится к области органической химии, а именно к новым краунсодержащим бисстириловым красителям, которые могут быть использованы в составе оптических хемосенсоров на катионы металлов, для мониторинга окружающей среды, в биологических жидкостях и др

Изобретение относится к измерительному устройству для определения по меньшей мере одного параметра пробы крови, с проточной измерительной ячейкой (1), в которой размещен по меньшей мере один люминесцентно-оптический сенсорный элемент (ST, SO, SG), приводимый в контакт с пробой крови, с по меньшей мере одним источником (4) света для возбуждения люминесцентно-оптического сенсорного элемента и по меньшей мере одним фотодетектором (6) для приема излученного люминесцентно-оптическим сенсорным элементом люминесцентного излучения

Изобретение относится к медицине и описывает способ детекции поврежденных влажностью влагочувствительных реагентов, где указанные реагенты приводят в контакт с образцом, содержащим воду, и далее выявляется присутствие в образце анализируемого вещества, по его реакции с указанными влагочувствительными реагентами, причем указанный способ включает: (a) измерение отражения света при длине волны, характерной для продуктов указанной реакции указанных влагочувствительных реагентов с анализируемым веществом в двух заданных временных точках после контакта указанных реагентов с указанным образцом; (b) измерение в тех же двух заданных временных точках отражения света при длине волны, характерной для эталонного инфракрасного красителя, причем указанный краситель объединен с указанными влагочувствительными реагентами и имеет характерную длину волны, отличающуюся от длины волны, измеряемой в п.(a), по меньшей мере на 120 нм; (c) расчет соотношения показателей отражения, измеренных при длинах волн согласно пп.(a) и (b), и заключение о том, что реагенты имеют сниженную, чем ожидалось, активность и повреждены влажностью, на основании различия в указанном соотношении для указанных двух заданных временных точек. Способ обеспечивает более точное идентифицирование качества индикаторных полосок. 2 н. и 20 з.п. ф-лы, 3 табл., 1 ил.

Изобретение относится к аналитической химии, в частности к сорбционно-спектрофотометрическим методам анализа. Концентрирование металла из пробы проводится при фиксированном значении pH, для чего к анализируемому раствору добавляют ацетатный буфер с pH 3,5-4,5, в полученный раствор погружают индикаторную пленку на 30-60 минут, после ее извлечения измеряют оптическую плотность на спектрофотометре при длине волны 610 нм. Концентрацию свинца определяют методом стандартной добавки или методом градуировочного графика. В качестве индикаторной пленки используют прозрачную полимерную подложку, на которую нанесен слой желатина толщиной до 20 мкм, иммобилизованный водным раствором бромпирогаллолового красного. Изобретение обеспечивает повышение чувствительности и селективности определения свинца, расширение интервала определяемых концентраций и позволяет сочетать разделение, концентрирование и прямое определение свинца. 2 з.п. ф-лы, 4 ил., 6 табл.

Изобретение относится к фильтрующим системам. Фильтрующая система включает корпус, фильтрующую среду, расположенную внутри корпуса, и оптический датчик аналитов, также расположенный внутри корпуса и связанный по текучей среде с фильтрующей средой. Оптический датчик аналитов включает детектирующую среду, которая изменяет по меньшей мере одну из своих оптических характеристик под воздействием аналита. Фильтрующая система дополнительно включает оптическое считывающее устройство, имеющее по меньшей мере один источник света и по меньшей мере один детектор. Оптическое считывающее устройство прикреплено к корпусу таким образом, что по меньшей мере часть света, испущенного по меньшей мере одним источником света, отражается от оптического датчика аналитов и принимается по меньшей мере одним детектором. Технический результат - расширение диапазона обнаружения летучих паров, которые могут быть обнаружены датчиком, и предотвращение эффектов возврата, и, следовательно, обеспечение более корректной индикации окончания срока службы. 10 з.п. ф-лы, 1 табл., 19 ил.
Наверх