Способ измерения диэлектрической проницаемости жидких и плоских твердых диэлектриков

Способ измерения относительной диэлектрической проницаемости жидких и плоских твердых диэлектриков основан на изменении реактивного сопротивления плоского воздушного конденсатора в результате заполнения его зазора исследуемым диэлектриком. Прикладывают к электродам плоского воздушного конденсатора с регулируемым зазором, равным толщине образца, переменное электрическое напряжение. Преобразуют ток конденсатора в напряжение, например, с помощью операционного усилителя, регулируют это напряжение, добиваясь его значения, численно равного или кратного диэлектрической проницаемости воздуха. Помещают образец вплотную между электродами конденсатора и определяют значение относительной диэлектрической проницаемости по показаниям регистрирующего прибора, например вольтметра. Данный способ измерения достаточно прост и точен. 1 ил.

 

Способ относится к электротехническим измерениям, предназначен для измерения относительной диэлектрической проницаемости жидких и плоских твердых диэлектриков и может быть использован в различных областях, производящих или использующих электротехнические вещества и материалы.

Относительная диэлектрическая проницаемость является одной из основных характеристик диэлектриков, и способы ее измерения хорошо известны. Большинство из этих способов основано на изменении электрической емкости или активного сопротивления плоского воздушного конденсатора после помещения в его зазор исследуемого диэлектрика.

В способе - RU №2234075, МПК G01N 22/00 - для определения диэлектрической проницаемости жидких и плоских твердых диэлектриков применяется динамический конденсатор, образуемый неподвижным электродом и вращающимся металлическим диском, на котором закреплен поляризованный пленочный электрет. Этот способ имеет ряд недостатков и ограничений. Применение электрического привода для вращения электрета делает этот метод малотехнологичным и ограничивает частотный интервал измерений диэлектрической проницаемости. Сложность способа определяется необходимостью измерений толщины образца, расстояния между электродами и величины зазора между образцом и вращающимся электретом, а также необходимостью вычислений измеряемой величины. Точность измерений принципиально не может быть достаточно высокой, т.к. кроме известной роли краевых эффектов, проявляемых в случаях, когда величина зазора измерительного конденсатора сравнима с размерами обкладок конденсатора, возникают и другие источники ошибок, например, зависящие от степени неоднородности распределения заряда по поверхности электрета.

Наиболее близким по технической сущности к заявленному способу является способ измерения диэлектрической проницаемости, приведенный в книге - Казарновский Д.М., Тареев Б.М. Испытание электронных материалов. - М. - Л.: Госэнергоиздат, 1963. В этом способе, изменяя величину зазора плоского измерительного конденсатора, к обкладкам которого приложено переменное напряжение, добиваются равенства токов конденсатора для случаев, когда исследуемый образец помещен в зазор конденсатора так и в отсутствие последнего. Недостаток способа в том, что при измерении диэлектрической проницаемости необходимы дополнительные операции измерений толщины образца и величины межэлектродного зазора измерительного конденсатора, а также вычислительные операции.

Задача, решаемая в заявленном способе, - измерение одного из основных свойств материала - диэлектрической проницаемости.

Технический результат заключается в упрощении способа измерения и повышении его точности.

Технический результат достигается тем, что в известном способе измерения относительной проницаемости жидких и плоских твердых диэлектриков, заключающемся в помещении образца в зазор плоского воздушного конденсатора с регулируемым зазором, приложении к электродам переменного электрического напряжения, согласно изобретению устанавливают зазор воздушного конденсатора равного толщине образца, преобразуют ток конденсатора в напряжение, например, с помощью операционного усилителя, регулируют это напряжение, добиваясь его значения, численно равного или кратного диэлектрической проницаемости воздуха; затем помещают образец вплотную между электродами конденсатора и определяют искомое значение по показаниям регистрирующего прибора, например вольтметра.

На чертеже показана принципиальная схема, позволяющая реализовать этот способ. Измерительный плоский конденсатор образован измерительными электродами 1 и 2, причем для изменения зазора между электродами электрод 1 может перемещаться (механическое устройство для перемещения электрода не показано). С целью уменьшения вклада краевых эффектов в ошибки измерений измерительный электрод 2 охвачен охранным электродом 3 так, что поверхности охватываемого измерительного и охранного электродов находятся в одной плоскости и зазоры между границами этих электродов значительно меньше зазора между измерительными электродами. Исследуемый плоский образец 4 помещен в зазор измерительного конденсатора вплотную к электродам. Электроды 1 и 3 подключены к выходу источника 5 переменного напряжения. Между электродами 2 и 3 включен усилитель 6, преобразующий ток измерительного конденсатора в переменное напряжение, которое на выходе измеряется вольтметром 7 переменного тока. В качестве усилителя 6 может быть использован, например, операционный дифференциальный усилитель, инвертирующий вход которого соединен с электродом 2, а неинвертирующий - с электродом 3. В цепь обратной связи усилителя 6 между инвертирующим входом и выходом усилителя включен реостат 8, регулируя который изменяют коэффициент преобразования тока конденсатора в напряжение на выходе усилителя. Отличительной особенностью такого включения операционного усилителя является его пренебрежимо малое входное сопротивление, не влияющее на величину тока измерительного конденсатора.

Рассмотрим суть предлагаемого способа. При напряжении U(t)=U0cosωt на выходе источника 5 все напряжение ввиду малости сопротивлений источника 5 и усилителя 6 практически падает на измерительном конденсаторе емкостью С1, площадь электрода 2 которого S, а величина воздушного зазора между электродами равна толщине измеряемого образца h. При этом ток измерительного конденсатора

где ε1 - диэлектрическая проницаемость воздуха (ε1≈1,0005);

ω - циклическая частота;

ε0=8,85·10-12 Ф/м - электрическая постоянная воздуха (ε1≈1,0005).

Эффективное значение тока будет

Эффективное напряжение на выходе усилителя

где R - сопротивление реостата 8;

- коэффициент преобразования диэлектрической проницаемости в напряжение.

Регулируя сопротивление R, можно добиться, чтобы величина k была численно равна единице и показания вольтметра соответствовали диэлектрической проницаемости воздуха, т.е. U1=1,0005 В.

Если при тех же значениях U0, R, ω и h зазор измерительного конденсатора заполнить диэлектриком с диэлектрической проницаемостью ε2, то емкость конденсатора увеличится в ε21 раз. Во столько же уменьшится реактивное сопротивление конденсатора, а следовательно, увеличатся ток конденсатора и напряжение на выходе усилителя, т.е. или . Но так как k=1, показания вольтметра U2 будут равны ε2.

Таким образом, для измерения диэлектрической проницаемости необходимо установить воздушный зазор плоского конденсатора равным толщине исследуемого образца, при включенном источнике переменного напряжения сопротивлением обратной связи усилителя добиться показаний вольтметра равными значению диэлектрической проницаемости воздуха, заполнить зазор конденсатора исследуемым диэлектриком и по показания вольтметра определить искомую величину.

Для определения диэлектрической проницаемости жидкого диэлектрика также предварительно добиваются показаний вольтметра, равных значению диэлектрической проницаемости воздуха, не изменяя величины зазора между электродами, измерительный конденсатор помещают в исследуемую жидкость так, чтобы зазор конденсатора был полностью заполнен жидкостью, и по показаниям вольтметра определяют искомую величину.

Способ измерения относительной диэлектрической проницаемости жидких и плоских твердых диэлектриков, заключающийся в помещении образца в зазор плоского воздушного конденсатора с регулируемым зазором, приложении к электродам переменного электрического напряжения, отличающийся тем, что устанавливают зазор воздушного конденсатора, равный толщине образца, преобразуют ток конденсатора в напряжение, например, с помощью операционного усилителя, регулируют это напряжение, добиваясь его значения численно равного или кратного диэлектрической проницаемости воздуха, затем помещают образец вплотную между электродами конденсатора и определяют искомое значение по показаниям регистрирующего прибора, например вольтметра.



 

Похожие патенты:

Изобретение относится к способам определения влажности. .

Изобретение относится к измерительной технике и может быть использовано для исследования различных диэлектрических материалов, а также в сельском хозяйстве для исследования электрофизиологического состояния семян.

Изобретение относится к измерительной технике и может быть использовано при производстве высокомолекулярных соединений, а также для прогнозирования изменения физических свойств полимеров при различных условиях эксплуатации.

Изобретение относится к измерительной технике, в частности к средствам определения параметров емкостных и резисторных сенсоров, используемых в качестве датчиков различных величин, например температуры, влажности, давления.

Изобретение относится к области измерительной техники и может быть использовано на скважинах или участках первичной переработки газа. .

Изобретение относится к области приборостроения, в частности к технике трехпозиционного контроля перемещения объектов различной физической природы. .

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения различных физических свойств (концентрации, смеси веществ, влагосодержания, плотности и др.) жидкостей, находящихся в емкостях.

Изобретение относится к области радиоизмерений параметров материалов в области сантиметровых (СВЧ) и миллиметровых (КВЧ) длин волн, в частности к измерению комплексной диэлектрической проницаемости и удельной проводимости пленочных импедансных немагнитных материалов и пленок из немагнитного проводящего материала.

Изобретение относится к области измерения диэлектрических параметров тонких пленок сложных оксидов, используемых в производстве литий-ионных аккумуляторов. .

Изобретение относится к измерениям и может быть использовано для непрерывного бесконтактного контроля уровня жидкостей в емкостях

Изобретение относится к способам определения влажности жидких углеводородов

Изобретение относится к способам измерения электрофизических параметров и контроля процесса осаждения диэлектрических частиц гетерогенных жидких сред

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения добротности резонаторов, применяемых в различных областях техники и научных исследованиях

Изобретение относится к области измерения электрических величин и может быть использовано в производстве существующих и новых поглощающих материалов типа углепластиков и применяется в СВЧ диапазоне, а также для контроля электрических параметров диэлектрической проницаемости и тангенса угла диэлектрических потерь
Изобретение относится к электрическим измерениям, а именно к определению электрических характеристик наночастиц, и может быть использовано в технологии наноэлектроники

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения различных физических свойств (концентрации, смеси веществ, влагосодержания, плотности и др.) жидкостей, находящихся в емкостях (технологических резервуарах, измерительных ячейках и т.п.)
Наверх