Способ электролитического получения магния из глубокообезвоженного карналлита и поточная линия для его осуществления

Группа изобретений относится к электролитическому получению магния из твердого глубокообезвоженного карналлита и поточной линии для его осуществления. Способ включает загрузку твердого глубокообезвоженного карналлита в головной аппарат, плавление его в потоке оборотного электролита. Затем проводят электрохимическое рафинирование и осветление получаемого расплава, электролитическое получение магния в рафинировочных и проточных электролизерах поточной линии. Отделение магния от электролита осуществляют в сепараторе и удаляют из него часть отработанного электролита. Оставшуюся часть отработанного электролита используют в виде оборотного для плавления в нем твердого глубокообезвоженного карналлита. При этом твердый глубокообезвоженный карналлит загружают в головной аппарат до 80% от необходимого для поточной линии, а остальной карналлит загружают в рафинировочные электролизеры. Оборотный электролит из сепаратора направляют в головной аппарат и рафинировочные электролизеры в количествах пропорционально величинам загружаемого в них сырья. Поточная линия для электролитического получения магния включает головной аппарат, рафинировочные и проточные электролизеры, сепаратор для отделения магния от электролита, объединенные в общий гидродинамический контур транспортными каналами. Сепаратор соединен дополнительными транспортными каналами с рафинировочными электролизерами. Техническим результатом является снижение трудозатрат за счет повышения производительности электролизеров и снижение удельного расхода электроэнергии. 2 н. и 1 з.п. ф-лы, 1 ил., 1 табл.

 

Изобретение относится к производству цветных металлов, в частности к производству магния электролизом расплавленных солей.

В промышленности реализован способ электролитического получения магния из хлормагниевого сырья как в электролизерах индивидуального питания, так и в электролизерах, объединенных в замкнутый гидродинамический контур - поточную линию. Сырье может поступать на электролиз как в расплавленном, так и в твердом состоянии (Лебедев О.А. Производство магния электролизом. - М.: Металлургия, 1988 г., стр.224-229).

Способ получения магния в поточной линии позволяет увеличить выход по току и производительность, а также снизить трудозатраты на обслуживание электролизеров. Использование в поточной линии твердого сырья позволяет значительно снизить капитальные вложения и расход электроэнергии, так как отпадает необходимость во второй стадии обезвоживания, связанной с плавлением и хлорированием сырья. Поэтому наиболее перспективным является способ получения магния в поточной линии с использованием твердого сырья.

Загрузка твердого сырья в каждый электролизер не представляется целесообразной, так как при этом возникают значительные трудности по созданию достаточно громоздкой системы транспортировки твердого сырья, требующей герметичности.

Известен способ получения магния в поточной линии с использованием в качестве сырья твердого обезвоженного карналлита, который загружается в головной аппарат поточной линии и плавится в потоке оборотного электролита, поступающего из сепаратора (Зуев Н.М., Иванов А.Б. и др. Разработка поточной технологии производства магния. Труды ВАМИ, №72, М., Металлургия, 1972 г., с.48-55).

При загрузке в головной аппарат твердого обезвоженного карналлита, содержащего 1,5-2,0% MgO и 1-5% Н2О, образуется большое количество шлама, который необходимо удалять, что приводит к значительным потерям сырья, кроме того, повышенное содержание кислородосодержащих примесей в полученном расплаве приводит к быстрому износу анодов и снижению технологических показателей на рафинировочных и проточных электролизерах.

Наиболее близким к предлагаемому способу является способ электролитического получения магния из глубокообезвоженного твердого хлормагниевого сырья с содержанием MgO и H2O не более 0,2 мас.% (патент Украины №69473 от 14.02.2002 г., С25, С 3/04, опубликован 15.09.2004 г.), включающий загрузку сырья в головной аппарат, смешение его с оборотным электролитом, расплавление и электрохимическое рафинирование получающегося расплава в головном аппарате при той же силе тока, что и на проточных электролизерах.

Недостаток прототипа заключается в том, что при его осуществлении все сырье в количестве 20-22 т/ч, необходимое для питания 32-36 электролизеров поточной линии загружается в головной аппарат, где происходит его плавление в потоке оборотного электролита, загружаемого в количестве 60-66 т/ч также в головной аппарат, и электролитическое рафинирование получаемого расплава.

Вместе с сырьем в головной аппарат поступает около 0,07 т/ч MgO и 0,07 т/ч Н2О, что приводит к пассивации катодов и зашламлению головного аппарата. При этом резко снижается выход по току в головном аппарате, вследствие чего газонасыщенность электролита хлором резко падает, что приводит к снижению скорости хлорирования MgO и Н2O. Эффективность электрохимической очистки получаемого расплава в головном аппарате резко снижается, и расплав с повышенным содержанием MgO и H2O будет поступать в рафинировочные и проточные электролизеры, что приведет к значительному расходу графита анодов и снижению выхода по току на этих электролизерах.

Описанный выше способ может быть осуществлен в поточной линии, включающей двухкамерный головной аппарат, рафинировочные и проточные электролизеры для получения магния, подключенные последовательно к магистральному шинопроводу и сепаратор для отделения магния от электролита. Все аппараты поточной линии объединены в единую гидродинамическую систему транспортными каналами. Недостаток известной поточной линии заключается в том, что она не позволяет распределять потоки оборотного электролита между головным аппаратом и рафинировочными электролизерами, в результате чего все необходимое количество оборотного электролита проходит через головной аппарат, увеличивая скорость потока в нем, что приводит к снижению степени очистки полученного хлормагниевого расплава от примесей, которые переходят в рафинировочные и проточные электролизеры, снижая выход по току на них.

Задачей настоящего изобретения является создание способа электролитического получения магния в поточной линии, обладающего более высокой эффективностью электрохимической очистки получаемого расплава в поточной линии, низкими энергетическими затратами при производстве магния и повышенной производительностью.

Достижение указанного технического результата обеспечивается тем, что в способе получения магния в поточной линии, включающем загрузку твердого глубокообезвоженного карналлита в головной аппарат, плавление его в потоке оборотного электролита, электрохимическое рафинирование и осветление получаемого расплава, электролитическое получение магния в электролизерах, отделение магния от электролита в сепараторе, удаление магния и части отработанного электролита из сепаратора, направление оставшейся части отработанного электролита в виде оборотного для плавления в нем твердого глубокообезвоженного карналлита, твердый глубокообезвоженный карналлит загружают в головной аппарат до 80% от необходимого для поточной линии, а остальной карналлит загружают в рафинировочные электролизеры.

Оборотный электролит из сепаратора направляют в головной аппарат и рафинировочные электролизеры в количествах, пропорциональных величинам количества загружаемого в них твердого глубоко обезвоженного карналлита.

Этим обеспечивается равномерное поступление примесей MgO и Н2O с карналлитом между головным аппаратом и рафинировочными электролизерами, достигается значительная электрохимическая очистка получаемого расплава в головном аппарате и рафинировочном электролизере с участием получаемых хлора и магния, что приведет к увеличению выхода по току на электролизерах поточной линии и снижению удельного расхода электроэнергии.

При загрузке твердого глубокообезвоженного карналлита в головной аппарат свыше 80% от необходимого для поточной линии резко снижается эффективность электрохимической очистки получаемого расплава, что приведет к увеличению расхода графитированных анодов в рафинировочных и проточных электролизерах.

При остановке головного аппарата на капитальный ремонт все сырье загружают в рафинировочные электролизеры. При этом сырье загружают в транспортные каналы перед первым и вторым рафинированными электролизерами, что позволяет сэкономить дополнительно капитальные затраты, необходимые для сооружения второго запасного головного аппарата.

Для реализации заявленного способа поточная линия для электролитического получения магния из глубокообезвоженного твердого карналлита, включающая головной аппарат, сепаратор для отделения магния от электролита, объединенные в общий гидродинамический контур транспортными каналами, рафинировочные и проточные электролизеры для получения магния, снабжена дополнительными транспортными каналами для соединения сепаратора с рафинировочными электролизерами.

На чертеже показана схема поточной линии.

Поточная линия включает головной аппарат 1, рафинировочные 2 и проточные 3 электролизеры, сепаратор 5 с установленными в нем циркуляционными насосами 6, транспортные каналы 7, дополнительный транспортный канал 8.

Поточная линия работает следующим образом.

В головной аппарат 1 из бункера 4 загружается твердый глубоко обезвоженный карналлит до 80% от необходимого количества для поточной линии, а оставшееся сырье загружают в рафинировочные электролизеры.

В места загрузки твердого карналлита непрерывно подают оборотный электролит с 7-10% MgCl2, который насосами-дозаторами 6 перекачивают из сепаратора 5 по каналам 7 и 8. Скорость загрузки глубокообезвоженного карналлита определяется часовой производительностью поточной линии по магнию, а интенсивность перекачки оборотного электролита принимают такими, чтобы концентрация хлорида магния в получаемом расплаве была равной 20%.

При загрузке твердого глубокообезвоженного карналлита, температура плавления которого близка к 450°С, в поток оборотного электролита, имеющего температуру 680-700°С, температура получаемого расплава понижается до 450-530°С. Обогащенный по MgCl2 расплав подогревают в головном аппарате и рафинировочном электролизере до 670-700° и подвергают комплексному рафинированию постоянным током, а именно получаемым на анодах хлором и выделяющимся на катодах магнием, а также отстаиванием от твердых взвесей.

Одновременная загрузка твердого глубокообезвоженного карналлита в головной аппарат и рафинировочный электролизер обеспечивает глубокую комплексную очистку получаемого расплава, который направляется в проточные электролизеры 3, где происходит разложение хлорида магния с получением магния и хлора. Наклонные каналы между группами электролизеров обеспечивают ускорение потоков электролита и полную эвакуацию магния из электролизеров и каналов.

Из последнего проточного электролизера расплав вместе с магнием по каналу попадает в сепаратор 5, где происходит отделение магния от электролита. Магний периодически извлекают из сепаратора. Отработанный электролит в качестве оборотного удаляется насосами-дозаторами и по транспортному каналу 7 и дополнительному транспортному каналу 8 направляется в головной аппарат 1 и рафинировочный электролизер 2 для плавления карналлита, а оставшаяся часть извлекается в виде отработанного электролита.

Пример осуществления способа

Твердый глубокообезвоженный карналлит, содержащий 49% MgCl2, 0,3 MgO и 0,3% Н2O, загружают в головной агрегат в количестве 13,22 т/ч и в рафинировочный электролизер в количестве 8,78 т/ч и оборотный электролит из сепаратора в количестве 40,0 т/ч и 26,0 т/ч соответственно. Получаемый расплав содержит 20% MgO. Его температура в зоне плавления карналлита снижается до 530°С. За счет использования переменного и постоянного тока расплав подогревают до 670°С.

При плавлении глубокообезвоженного карналлита расплав обогащается гидроксихлоридом (до 0,2%), который разлагается в камере электрохимической очистке головного аппарата и в рафинировочном электролизере. За время пребывания готового расплава в головном аппарате и рафинировочном электролизере концентрация MgOHCl в расплаве снижается до тысячных долей процента.

Рафинировочный и проточные электролизеры работают при силе тока 200 кА и при катодной плотности тока 0,3 А/см2. Температура электролита в первых электролизерах линии 670°С, в последующих 680-690°С.

Из рафинировочного электролизера электролит поступает в проточные электролизеры, где постепенно обогащается магнием. В копильнике сепаратора 5 происходит накопление магния, который периодически удаляют вакуум-ковшом и направляют на литейный конвейер. Отработанный электролит из сепаратора 5 после отделения от него магния перекачивают частично в головной аппарат и в рафинировочный электролизер 2 в качестве оборотного электролита, а оставшийся в количестве ≈10,6 т/ч отработанный электролит выводится из процесса.

Таким образом происходит загрузка твердого глубокообезвоженного сырья в головной аппарат до 80% от необходимого для поточной линии, а оставшееся сырье загружают в рафинировочный электролизер, создают благоприятные условия для плавления и электрохимической очистки получаемого расплава от кислородосодержащих примесей и железа, что позволит увеличить выход по току и снизить удельный расход электроэнергии.

Показатели процесса получения магния в поточной линии по прототипу и заявленному способу приведены в таблице.

Таблица
ПоказателиВеличина
прототипЗаявляемое решение
Выход по току, %79,485,0
Производительность поточной линии по магнию, %100110
Удельный расход электроэнергии, кВч/тMg1300012200

Как видно из приведенных в таблице данных, заявленный способ электролитического получения магния из глубокообезвоженного карналлита и поточная линия для его осуществления позволяют снизить трудозатраты за счет повышения производительности электролизеров и снизить удельный расход электроэнергии.

1. Способ электролитического получения магния в поточной линии, включающий загрузку твердого глубокообезвоженного карналлита в головной аппарат, плавление его в потоке оборотного электролита, электрохимическое рафинирование и осветление получаемого расплава, электролитическое получение магния в рафинировочных и проточных электролизерах поточной линии, отделение магния от электролита в сепараторе, удаление части отработанного электролита из сепаратора, направление оставшейся части отработанного электролита в виде оборотного для плавления в нем твердого глубокообезвоженного карналлита, отличающийся тем, что твердый глубокообезвоженный карналлит загружают в головной аппарат в количестве до 80% от необходимого для поточной линии, а остальной карналлит загружают в рафинировочные электролизеры.

2. Способ по п.1, отличающийся тем, что оборотный электролит из сепаратора направляют в головной аппарат и рафинировочные электролизеры в количествах, пропорциональных величинам количества загружаемого в них твердого глубокообезвоженного карналлита.

3. Поточная линия для электролитического получения магния из глубокообезвоженного твердого карналлита, включающая головной аппарат, сепаратор для отделения магния от электролита, объединенные в общий гидродинамический контур транспортными каналами, рафинировочные и проточные электролизеры для получения магния, отличающаяся тем, что она снабжена дополнительными транспортными каналами для соединения сепаратора с рафинировочными электролизерами.



 

Похожие патенты:

Изобретение относится к аноду для выделения газа в электрохимическом процессе, содержащему подложку из титана или другого вентильного металла и отличающемуся поверхностью с низкой средней шероховатостью, составляющей от 2 до 6 микрометров по показаниям профилометра со средней шириной полосы вокруг средней линии Рс±8,8 микрометров, пики которой в целом совпадают с границами кристаллических зерен.

Изобретение относится к гидрометаллургии и может быть использовано для электролитического извлечения благородных, редких и цветных металлов из разбавленных растворов их солей.

Изобретение относится к производству цветных металлов, в частности к производству магния электролизом расплавленных солей. .

Изобретение относится к цветной металлургии, в частности к получению магния электролитическим путем. .

Изобретение относится к получению алюминия электролизом, в частности, к комплекту инертных анодов электролизера для получения алюминия. .

Изобретение относится к электролитическому устройству для использования в способе извлечения оксидов. .

Изобретение относится к цветной металлургии, в частности к устройствам для подвода тока к электролизерам для получения магния электролизом расплавленного сырья. .

Изобретение относится к цветной металлургии, в частности к устройствам для подвода тока к электролизерам для получения магния электролизом расплавленного сырья. .

Изобретение относится к электролитическому извлечению металлов из растворов, в частности к извлечению благородных металлов из цианисто-щелочных элюатов, и может быть использовано на золотоизвлекательных предприятиях с цианистой и угольно-сорбционной технологией извлечения благородных металлов.
Изобретение относится к технологии производства обогащенного карналлита путем его отделения от сопутствующих руд и примесей. .

Изобретение относится к производству цветных металлов, в частности к производству магния электролизом расплавленных солей. .

Изобретение относится к цветной металлургии, в частности к получению магния электролитическим путем. .

Изобретение относится к цветной металлургии, в частности к устройствам для подвода тока к электролизерам для получения магния электролизом расплавленного сырья. .

Изобретение относится к области металлургии и химической технологии неорганических веществ и может быть использовано для комплексной переработки силикатов магния - серпентинита.

Изобретение относится к цветной металлургии, в частности к устройствам для подвода тока к электролизерам для получения магния электролизом расплавленного сырья. .

Изобретение относится к цветной металлургии, в частности к производству магния электролизом расплавленных хлоридов металлов. .

Изобретение относится к цветной металлургии, в частности к получению магния электролизом расплавленных солей хлоридов металлов, а именно к устройствам для подвода тока к электролизерам с нижним вводом анодов.

Изобретение относится к цветной металлургии, а именно к устройствам для получения магния электролизом расплавленных солей. .
Изобретение относится к цветной металлургии, а именно к процессу получения магния электролизом расплавленных солей, в частности к способам подготовки катода для электролитического получения магния.
Наверх