Способ электрохимической обработки продуктивного пласта нефтегазовых скважин

Изобретение относится к области добычи нефти и может быть использовано для освоения выходящих из бурения скважин, а также для интенсификации работы действующих скважин как обсаженных, так и скважин с открытым стволом, за счет растворения неорганических и органических отложений в стволе скважины и призабойной зоне пласта. Технический результат - повышение эффективности раскольматации зоны продуктивного пласта от продуктов бурения, в том числе и на полимерной основе, а также удаления неорганических осадков, образующихся в скважине и призабойной зоне пласта в процессе эксплуатации за счет создания устойчивой кислой среды с низкими значениями рН в интервале продуктивного пласта и исключения ее нейтрализации в процессе обработки, подавление жизнедеятельности сульфатвосстанавливающих бактерий. В способе электрохимической обработки продуктивного пласта нефтегазовых скважин, включающем глушение скважины жидкостью - минерализованной водой, извлечение скважинного оборудования, установку в скважину электрически связанных с источником тока электродов, включение постоянного источника тока и проведение обработки продуктивного пласта электрическим полем путем пропускания электрического тока, установку в скважине электрически связанных с источником тока электродов производят с размещением их ниже уровня жидкости в скважине, в качестве электродов используют снабженные центраторами из диэлектрического материала графитовые анод и катод, пространственно разнесенные друг относительно друга по высоте скважины, при этом анод устанавливают в зоне продуктивного пласта, а катод - на 10-100 м ниже анода, причем в качестве минерализованной воды для глушения скважины используют минерализованную воду с добавкой щелочного поверхностно-активного вещества ПАВ в концентрации 0,25-1,0 мас.%. Изобретение развито в зависимых пунктах. 3 з.п. ф-лы, 5 ил., 4 табл.

 

Изобретение относится к области добычи нефти и может быть использовано для освоения выходящих из бурения, а также для интенсификации работы действующих скважин (как обсаженных, так и скважин с открытым стволом), за счет растворения неорганических и органических отложений в стволе скважины и призабойной зоне пласта.

Известен способ обработки продуктивного пласта нефтегазовых скважин путем импульсного и ионно-плазменного воздействия на пласт на уровне перфорации скважины [1], включающий пропускание постоянного электрического тока с напряжением 90-300 В и плотностью 0,1-1 А/см2 через закачиваемую в скважину минерализованную воду с плотностью не менее 1,12 г/см, при этом на пласт периодически через каждые 25-30 мин осуществляют импульсное воздействие электрическими импульсными разрядами, формируемыми в заполненной минерализованной водой разрядной камере ионно-плазменного генератора из электрода-анода и электрода-катода для обеспечения репрессивно-депрессионного режима. После завершения импульсного воздействия открывают затрубное пространство и, прокачивая минерализованную воду из забойной зоны скважины, производят удаление продуктов разложения и расплавления.

Однако указанный известный способ обладает следующими недостатками:

- во-первых, при такой конфигурации электродов, используемых в известном способе, образующиеся одновременно в разрядной камере кислота и щелочь (именно с образованием ионов водорода и гидроксид-ионов осуществляется электрохимический процесс при пропускании электрического тока) взаимно нейтрализуются, в результате не обеспечивается образование устойчивой кислой среды в интервале продуктивного пласта, что снижает эффективность обработки;

- во-вторых, для реализации известного способа необходим генератор импульсных сигналов, что усложняет способ и делает его дорогостоящим.

Наиболее близким к предлагаемому техническому решению по назначению является способ электрохимической обработки нефтегазовых скважин, включающий глушение скважины жидкостью - минерализованной водой, извлечение скважинного оборудования, установку в скважину на уровень нефтеносных пластов электрически связанных с источником тока электродов: анода и катода, одним из которых - катодом - является обсадная труба, включение постоянного источника тока и проведение обработки продуктивного пласта электрическим полем путем пропускания электрического тока до выведения дебита скважины на постоянное значение [2]. Причем обработку ведут при плотности тока 0,001-0,003 А/см2, а после прекращения пропускания тока электроды извлекают из скважины. В преимущественном варианте обработку нефтегазовой скважины известным способом проводят не свыше двух месяцев.

Указанный известный способ обладает следующими недостатками:

- во-первых, необходимость наличия в скважине обсадной трубы, выполняющей роль катода, исключает реализацию способа в скважинах с открытым стволом;

- во-вторых, в силу низкой плотности постоянного тока, пропускаемого через электроды, степень подкисления воды в области анода недостаточна для полного растворения неорганических осадков;

- в-третьих, при рекомендуемой для осуществления известного способа конфигурации электродов одновременно образующиеся в зоне перфорации кислота и щелочь взаимно нейтрализуются, что снижает эффективность обработки;

Кроме того, обсадная труба, выступая в качестве электрода, является источником блуждающих токов в земной коре, что будет приводить к усилению коррозии глубинного оборудования других скважин.

Технический результат, обеспечиваемый предлагаемым изобретением, заключается в повышении эффективности по раскольматации зоны продуктивного пласта от продуктов бурения, в том числе и на полимерной основе, а также по удалению неорганических осадков, образующихся в скважине и призабойной зоне пласта в процессе эксплуатации за счет создания устойчивой кислой среды с низкими значениями рН в интервале продуктивного пласта и исключения ее нейтрализации в процессе обработки, при одновременном обеспечении реализации способа в различных скважинах, как обсаженных, так и с открытым стволом.

Техническим результатом является также подавление жизнедеятельности сульфатвосстанавливающих бактерий.

Поставленный технический результат достигается предлагаемым способом электрохимической обработки продуктивного пласта нефтегазовых скважин, включающим глушение скважины жидкостью - минерализованной водой, извлечение скважинного оборудования, установку в скважину электрически связанных с источником тока электродов, включение постоянного источника тока и проведение обработки продуктивного пласта электрическим полем путем пропускания электрического тока, при этом новым является то, что установку в скважине электрически связанных с источником тока электродов производят с размещением их ниже уровня жидкости в скважине, в качестве электродов используют снабженные центраторами из диэлектрического материала графитовые анод и катод, пространственно разнесенные относительно друг друга по высоте скважины, при этом анод устанавливают в зоне продуктивного пласта, а катод - на 10-100 м ниже анода, причем в качестве минерализованной воды для глушения скважины используют минерализованную воду с добавкой щелочного поверхностно-активного вещества ПАВ в концентрации 0,25-1,0 мас.%.

В качестве щелочного поверхностно-активного вещества ПАВ используют реагенты марок ГФ-1К - катионогенное ПАВ, или НМК-21 - смесь катионогенных и анионогенных ПАВ, или Hansanol NS262 - анионогенное ПАВ.

В качестве электрического тока, пропускаемого через электроды, используют постоянный электрический ток с напряжением 10-15 В и плотностью 0,10-0,20 А/см.

В качестве электродов используют графитовые стержни или пластины.

Указанный технический результат достигается за счет следующего.

При пропускании между электродами постоянного электрического тока, преимущественно с напряжением 10-15 В и плотностью 0,10-0,20 А/см, происходят следующие процессы:

Катод: H2O+e-→1/2H2+OH-

Анод: Cl--e-→1/2Cl2

H2O-2e-→2H++1/2O2

Таким образом, при электролизе на катоде происходит выделение газообразного водорода и подщелачивание воды, а на аноде - выделение газообразного хлора и подкисление воды. Образующиеся на катоде гидроксид-ионы ОН- вступают в реакцию с ионами кальция и магния в минерализованной воде с образованием малорастворимых гидроксидов этих металлов, которые в виде рыхлого осадка скапливаются на забое скважины и в дальнейшем могут быть легко вымыты водой.

Выделяющийся на аноде хлор растворяется в воде и вступает с ней в дальнейшую реакцию с образованием соляной и хлорноватистой кислот:

Cl22О=HCl+НСО.

Хлорноватистая кислота является слабой кислотой и постепенно разлагается с выделением атомарного кислорода и с одновременным образованием сильной хлорноватой кислоты:

HOCl=HCl+O

HOCl+2O=HClO3

Таким образом, в результате электрохимических процессов и последующих вторичных химических реакций на аноде и в анодном пространстве происходит преимущественное образование ионов водорода Н+ газообразного хлора Cl2 и атомарного водорода О. Ионы водорода реагируют с карбонатами МСО3, оксидами МО и гидроксидами М(ОН)2 металлов (где М=Са, Mg, Sr, Ba, Zn), образующимися в процессе бурения и содержащимися в пласте согласно уравнениям

МСО3+2H+2+2O+CO2,

MO+2H+=M2++H2O,

M(OH)2+2Н+2++2Н2O,

с образованием легкорастворимых солей и переводом ионов М2+ в водную фазу. В свою очередь газообразный хлор и атомарный кислород, являющиеся сильными окислителями, расщепляют полимерные основы буровых растворов до легкорастворимых олигомеров и мономеров.

Отличие предлагаемого способа от прототипа состоит в том, что в качестве катода используют отдельный электрод, спускаемый в скважину ниже анода и отделенный от него расстоянием 10-100 м, причем оба электрода изолированы от стенок скважины центраторами из диэлектрика, и для увеличения концентрации кислоты в анодном пространстве (т.е. в интервале продуктивного пласта) в минерализованную воду добавляется щелочное ПАВ в концентрации 0,25-1,0 мас.% (в преимущественном варианте - 0,50 мас.%).

Использование заявляемого способа позволяет повысить эффективность электрохимической обработки за счет пространственного разделения катодного и анодного пространства (анод и катод пространственно разнесены друг относительно друга по высоте скважины на 10-100 м) с удалением гидроксид-ионов из зоны обработки в виде малорастворимых соединений, а также за счет повышения концентрации кислоты и устойчивости кислотности вблизи анода вследствие введения ПАВ указанного вида - щелочного ПАВ. Лабораторные исследования показали, что использование других ПАВ в предлагаемом способе не позволяет обеспечить высокую кислотность в анодном пространстве.

Графит, предлагаемый для изготовления электродов, является дешевым и экологически чистым материалом, продукты разложения которого не загрязняют скважину.

Использование в предлагаемом способе автономных электродов позволяет успешно осуществлять способ в различных скважинах, как в обсаженных, так и с открытым стволом. При этом возможны освоение выходящих из бурения и интенсификация работы действующих скважин с одновременным растворением неорганических и органических осадков в стволе скважины и призабойной зоне пласта.

При реализации предлагаемого способа в промысловых условиях осуществляют следующие операции в нижеуказанной последовательности:

- производят глушение скважины жидкостью - минерализованной водой, например, с плотностью 1,05-1,18 г/см, с предварительным добавлением в нее 0,25-1,0 мас.% щелочного ПАВ, например реагентов марки ГФ-1К, НМК-21, Hansanol NS262;

- далее извлекают скважинное оборудование,

- устанавливают в скважину ниже уровня жидкости электрически связанные посредством кабеля с источником тока электроды - анод и катод;

- в качестве электродов используют снабженные центраторами из диэлектрического материала графитовые анод и катод, пространственно разнесенные друг относительно друга по высоте скважины,

- при этом анод устанавливают в зоне продуктивного пласта,

- а катод - на 10-100 м ниже анода;

- включают постоянный источник тока;

- проводят обработку продуктивного пласта электрическим полем путем пропускания электрического тока, например с напряжением 10-15 В и плотностью 0,10-0,20 А/см2;

- обработку осуществляют в течение 12-24 ч;

- затем производят отключение источника тока;

- далее осуществляют промывку скважины минерализованной водой и скважину пускают в эксплуатацию.

В качестве щелочных ПАВ используют следующие вещества:

- реагент марки ГФ-1К (катионогенное ПАВ) по ТУ 2482-005-12064382-98;

- реагент марки НМК-21 (смесь катионогенных и анионогенных ПАВ) по ТУ 2458-001-52743584-02;

- реагент марки Hansanol NS262 (анионогенное ПАВ) по CAS №68585-34-2, EINECS №500-223-8.

Предлагаемый способ иллюстрируется чертежами, где на фиг.1 приведена схема размещения электродов в скважине; на фиг.2 -зависимость рН анолита (жидкости в анодном пространстве) от времени электролиза для плотностей тока 0,042 (кривая 1), 0,085 (кривая 2) и 0,17 А/см2 (кривая 3) и модельного минерализованного раствора с плотностью 1,172 г/см3 и с содержанием солей: CaCl2 - 56 г/л, MgCl2 - 20 г/л, NaCl - 200 г/л; на фиг.3 - зависимость рН анолита от времени при плотности тока 0,17 А/см2 для модели пластовой воды с плотностью 1,172 г/см3 без добавки (кривая 1) и с добавкой различных ПАВ в концентрации 0,50 мас.% (кривая 2 - ГФ-1К, кривая 3 - НМК-21, кривая 4 - Hansanol NS 262); на фиг.4 - зависимость рН анолита от времени при плотности тока 0,17 А/см2 для модели пластовой воды с плотностью 1,172 г/см3 без добавки (кривая 1) и с добавкой ГФ-1К в концентрации 0,25 (кривая 2), 0,50 (кривая 3), 1,0 мас.% (кривая 4); на фиг.5 - зависимость рН анолита от времени при плотности тока 0,17 А/см2 для пластовой воды с плотностью 1,136 г/см3 без добавки (кривая 1) и с добавкой ГФ-1К в концентрации 0,50 мас.% (кривая 2).

Скважину 1 (фиг.1) заглушают минерализованной водой 2, содержащей добавку щелочного ПАВ, и поднимают оборудование. Затем в скважину спускают графитовый анод 3 и графитовый катод 4, расположенный ниже анода, таким образом, чтобы уровень жидкости 5 в скважине 1 находился выше положения анода 3. Электроды 3 и 4 изолированы от стенок скважины 1 при помощи центраторов 6 из диэлектрика и соединены кабелем 7 с источником постоянного тока 8 на дневной поверхности. Анод 3 располагают против продуктивного пласта 9, а катод 4 - на 10-100 метров ниже анода 3. При пропускании между электродами 3 и 4 постоянного электрического тока, например, с напряжением 10-15 В и плотностью 0,15-0,20 А/см2 на аноде 3 и в анодном пространстве 10 происходят электрохимические процессы и вторичные химические реакции, приводящие к образованию ионов водорода H+, газообразного хлора Cl2 и атомарного водорода О, которые растворяют осадки карбонатов, оксидов и гидроксидов металлов и расщепляют полимерные основы буровых растворов до легкорастворимых олигомеров и мономеров. Кроме того, в этих условиях происходит подавление жизнедеятельности сульфатвосстанавливающих бактерий.

Согласно предлагаемому способу можно производить раскольматацию призабойной зоны от продуктов бурения и отложений и повышать проницаемость пласта как обсаженных скважин, так и скважин с открытым стволом.

В качестве электродов в предложенном способе можно использовать электроды в виде графитовых стержней или пластин.

Заявляемый способ был испытан в лабораторных условиях. Для этого была изготовлена двухэлектродная стеклянная ячейка, в которой катодное и анодное пространство были разделены пористой перегородкой. В качестве электродов использовались одинаковые по размеру пластины из электрографита марки ЭГ-75 размером 28×7×3 мм. Ячейка заполнялась минерализованной водой, и в анодное пространство помещался стеклянный электрод для измерения рН. Вода в анодном пространстве перемешивалась при помощи магнитной мешалки. После включения постоянного тока производились измерения рН анолита (жидкости в анодном пространстве) в течение 10 мин с интервалом 30 с.Полученные результаты приведены в таблицах 1-4 и на фиг.2-5.

В таблице 1 и на фиг.2 приведены зависимости рН анолита от времени электролиза для плотностей тока 0,042, 0,085 и 0,17 А/см2 и модельного раствора с плотностью 1,172 г/см3, с содержанием солей: CaCl2 - 56 г/л, MgCl2 - 20 г/л, NaCl - 200 г/л. Как следует из указанных экспериментальных данных, с повышением плотности тока происходит более быстрый рост концентрации кислоты в анодном пространстве и при 0,17 А/см2 рН стабилизируется на уровне 0,6-0,7 после 6 мин электролиза.

Далее для плотности тока 0,17 А/см2 было исследовано влияние добавки к модельному раствору различных ПАВ в концентрации 0,50%. Были выбраны реагенты марок: ГФ-1К (катионогенное ПАВ), НМК-21 (смесь катионогенных и анионогенных ПАВ) и Hansanol NS 262 (анионогенное ПАВ). Все указанные реагенты являются щелочными ПАВ. Результаты приведены в таблице 2 и на фиг.3. Как следует из экспериментальных данных, наиболее быстрое понижение рН и самую высокую концентрацию кислоты в анодном пространстве обеспечивает добавка реагента ГФ-1К.

Согласно данным таблицы 3, графически представленным на фиг.4, концентрация 0,50% является оптимальной по сравнению с рекомендуемыми концентрациями 0,25% и 1,0%.

Также было исследовано изменение во времени рН анолита для пластовой воды с плотностью 1,136 г/см3 без добавки ПАВ и с добавкой 0,50% ГФ-1К (таблица 4, фиг.5). Повышение концентрации кислоты в анодном пространстве и влияние добавки ГФ-1К для пластовой воды сходны с модельным раствором.

Результаты, полученные в ходе испытаний, показывают, что предлагаемый способ позволит эффективно производить раскольматацию призабойной зоны от продуктов бурения и различных отложений за счет обеспечения создания устойчивой кислой среды с низкими значениями рН в интервале продуктивного пласта и исключения ее нейтрализации в процессе обработки.

ИСТОЧНИКИ ИНФОРМАЦИИ

1. Патент РФ №2213860, кл. Е21В 43/25, 2001 г.

2. Патент РФ №2087692, кл. Е21В 43/25, 1993 г.

Таблица 1
Зависимость рН анолита от времени (t) при различных плотностях тока для модели минерализованной воды с плотностью 1,172 г/см3
t, мин0,042 А/см20,085 А/см20,17 А/см2
0,56,505,713,10
1,05,874,292,14
1,55,043,621,82
2,04,383,431,57
2,54,053,311,32
3,03,903,211,16
3,53,803,121,04
4,03,723,040,96
4,53,652,940,88
5,03,602,850,83
5,53,542,760,77
6,03,492,690,73
6,53,442,610,71
7,03,392,530,69
7,53,342,460,65
8,03,302,400,63
8,53,262,330,61
9,03,222,280,59
9,53,182,230,58
10,03,142,180,59

Таблица 2
Зависимость рН анолита от времени при плотности тока 0,17 А/см2 для модели пластовой воды с плотностью 1,172 г/см3 без добавки и с добавкой различных щелочных ПАВ в концентрации 0,50 мас.%
t, минбез ПАВГФ-1КНМК-21Hansanol NS 262
0,53,103,573,143,03
1,02,141,350,981,74
1,51,820,890,671,37
2,01,570,540,541,07
2,51,320,440,460,84
3,01,160,260,380,66
3,51,040,160,320,53
4,00,960,070,280,44
4,50,880,000,260,35
5,00,83-0,230,29
5,50,77-0,210,23
6,00,73-0,200,20
6,50,71-0,210,17
7,00,69-0,210,15
7,50,65-0,200,11
8,00,63-0,190,08
8,50,61-0,180,05
9,00,59-0,170,03
9,50,58-0,180,01
10,00,59-0,18-

Таблица 3
Зависимость рН анолита от времени при плотности тока 0,17 А/см2 для модели пластовой воды с плотностью 1,172 г/см3 без добавки и с добавкой реагента ГФ-1К в концентрации 0,25-1,0 мас.%
t, минбез ПАВ0,25% ГФ-1К0,50% ГФ-1К1,0% ГФ-1К
0,53,104,513,575,60
1,02,142,641,352,65
1,51,822,240,891,13
2,01,571,990,540,70
2,51,321,000,440,45
3,01,160,830,260,29
3,51,040,720,160,18
4,00,960,630,070,09
4,50,880,550,000,05
5,00,830,46-0,00
5,50,770,42--
6,00,730,39--
6,50,710,35--
7,00,690,32--
7,50,650,30--
8,00,630,28--
8,50,610,26--
9,00,590,24--
9,50,580,22--
10,00,590,22--

Таблица 4
Зависимость рН анолита от времени при плотности тока 0,17 А/см2 для пластовой воды с плотностью 1,136 г/см3 без добавки и с добавкой реагента ГФ-1К в концентрации 0,50 мас.%
t, мин без ПАВ0,50% ГФ-1К
0,54,484,21
1,02,092,31
1,51,500,85
2,01,220,38
2,51,060,23
3,00,950,16
3,50,860,10
4,00,790,03
4,50,730,01
5,00,70-
5,50,67-
6,00,66-
6,50,63-
7,00,62-
7,50,62-
8,00,61-
8,50,62-
9,00,62-
9,50,61-
10,00,61-

1. Способ электрохимической обработки продуктивного пласта нефтегазовых скважин, включающий глушение скважины жидкостью - минерализованной водой, извлечение скважинного оборудования, установку в скважину электрически связанных с источником тока электродов, включение постоянного источника тока и проведение обработки продуктивного пласта электрическим полем путем пропускания электрического тока, отличающийся тем, что установку в скважине электрически связанных с источником тока электродов производят с размещением их ниже уровня жидкости в скважине, в качестве электродов используют снабженные центраторами из диэлектрического материала графитовые анод и катод, пространственно разнесенные относительно друг друга по высоте скважины, при этом анод устанавливают в зоне продуктивного пласта, а катод - на 10-100 м ниже анода, причем в качестве минерализованной воды для глушения скважины используют минерализованную воду с добавкой щелочного поверхностно-активного вещества ПАВ в концентрации 0,25-1,0 мас.%.

2. Способ по п.1, отличающийся тем, что в качестве щелочного поверхностно-активного вещества ПАВ используют реагенты марок ГФ-1К - катионогенное ПАВ, или НМК-21 - смесь катионогенных и анионогенных ПАВ, или Hansanol NS262 - анионогенное ПАВ.

3. Способ по п.1, отличающийся тем, что в качестве электрического тока, пропускаемого через электроды, используют постоянный электрический ток с напряжением 10-15 В и плотностью 0,10-0,20 А/см2.

4. Способ по п.1, отличающийся тем, что в качестве электродов используют графитовые стержни или пластины.



 

Похожие патенты:

Изобретение относится к оборудованию для освоения и ремонта нефтяных и газоконденсатных скважин и предназначено для повышения ресурса работы плунжерных пар имплозионных гидрогенераторов давления многократного действия при эксплуатации в наклонных и горизонтальных нефтедобывающих скважинах в условиях загрязненной рабочей среды.

Изобретение относится к технической акустике и может быть использовано для интенсификации притока нефти или других текучих жидкостей к добывающей скважине. .

Изобретение относится к области добывающих отраслей промышленности, в частности к нефтедобывающей промышленности, и может быть использовано для повышения эффективности обработки призабойной зоны нефтяных скважин и устранения вредного влияния асфальтосмолопарафиновых отложений.

Изобретение относится к устройствам для акустического воздействия на продуктивные пласты, зоны перфорации для увеличения дебета нефтяных и газовых скважин и проведении ремонтно-изоляционных работ.

Изобретение относится к нефтедобывающей промышленности, а именно к области завершения строительства многозабойных разветвленно-горизонтальных скважин (МРГС) с направлением горизонтальной части стволов (ответвлений) вверх по отношению к основному стволу и, в частности, к процессу освоения при заканчивании их бурением, а также применимо при освоении подобных МРГС после проведения работ по обработке призабойной зоны (ОПЗ).

Изобретение относится к нефтедобывающей промышленности и предназначено для автоматического управления декольматацией эксплуатационной многопластовой гидрогеологической скважины.

Изобретение относится к области эксплуатации скважин и может быть использовано для активации малодебитных и простаивающих нефтяных и газовых скважин. .
Изобретение относится к нефтяной промышленности и может найти применение при освоении нагнетательной или добывающей скважины. .

Изобретение относится к горному делу и может быть использовано для освоения и восстановления дебита эксплуатационных скважин, в частности для интенсификации притоков пластовых флюидов.

Изобретение относится к нефтяной промышленности и может найти применение при приготовлении обратной нефтекислотной эмульсии для обработки призабойной зоны нефтедобывающей скважины.

Изобретение относится к нефтяной и газовой промышленности, в частности к строительству скважин и их капитальному ремонту, а именно при креплении обсадных колонн и создании флюидоупорных изоляционных покрышек в интервале хемогенных отложений, а также к процессу эксплуатации месторождений и ликвидации скважин.
Изобретение относится к области нефтяной и газовой промышленности, а именно, к буровым растворам для вскрытия продуктивного пласта-коллектора. .
Изобретение относится к области бурения нефтяных и газовых скважин, в частности к смазочным добавкам для буровых растворов. .
Изобретение относится к нефтегазодобывающей промышленности, а именно к составам, используемым для ограничения водопритоков и заколонных пластовых перетоков при бурении и капитальном ремонте нефтяных и газовых скважин.

Изобретение относится к нефтегазодобывающей промышленности, а именно к тампонажным растворам, используемым при ликвидации негерметичности обсадных колонн газовых и газоконденсатных скважин, осложненных наличием слабосвязанных, склонных к гидроразрыву пород, а также наличием в разрезе многолетнемерзлых пород (ММП).
Изобретение относится к области бурения нефтегазовых скважин, в частности, представленных мощными отложениями высоковязких глин, склонных к набуханию, в том числе с изменением целостности ствола скважины, особенно в наклонном интервале.
Изобретение относится к области нейтрализации сероводорода и легких меркаптанов в углеводородных средах химическими реагентами-нейтрализаторами и может быть использовано в нефтегазодобывающей, нефтегазоперерабатывающей и нефтехимической промышленности.
Изобретение относится к нефтяной промышленности и может быть использовано, в частности, при строительстве скважин в части крепления и проведении ремонтно-изоляционных работ, а также в промышленности строительных материалов при производстве бетонов, строительных растворов
Наверх