Способ определения собственных форм колебаний упругой конструкции



Способ определения собственных форм колебаний упругой конструкции
Способ определения собственных форм колебаний упругой конструкции
Способ определения собственных форм колебаний упругой конструкции
Способ определения собственных форм колебаний упругой конструкции
Способ определения собственных форм колебаний упругой конструкции
Способ определения собственных форм колебаний упругой конструкции
Способ определения собственных форм колебаний упругой конструкции
Способ определения собственных форм колебаний упругой конструкции
Способ определения собственных форм колебаний упругой конструкции
G01H1 - Измерение механических колебаний или ультразвуковых, звуковых или инфразвуковых колебаний (генерирование механических колебаний без измерений B06B,G10K; определение местоположения, направления или измерение скорости объекта G01C,G01S; измерение медленно меняющегося давления жидкости G01L 7/00; измерение дисбаланса G01M 1/14; определение свойств материалов с помощью звуковых или ультразвуковых колебаний, пропускаемых через эти материалы G01N; системы с использованием отражения или переизлучения акустических волн, например формирование акустических изображений G01S 15/00; сейсмология, сейсмическая разведка, акустическая разведка G01V 1/00; акустооптические устройства как таковые G02F; получение

Владельцы патента RU 2308687:

Открытое акционерное общество "Научно-производственное объединение "Сатурн" (RU)

Использование: для определения собственных форм колебаний упругой конструкции. Сущность: заключается в том, что при определении собственных форм колебаний упругой конструкции в m заданных точках наблюдения Вj (j=1, 2, 3,..., m) измеряют собственные частоты колебаний конструкции, возбуждают конструкцию на нескольких частотах, лежащих вне окрестности собственных частот, выбирают точку наблюдения А и измеряют амплитуды изменения параметра наблюдения на каждой из частот возбуждения в каждой из m заданных точек, а также в выбранной точке наблюдения А конструкции, при этом амплитуды изменения параметра наблюдения в каждой из m заданных точек Вj (j=1, 2, 3,..., m) и выбранной точке наблюдения А измеряют одновременно, после чего, используя заданную математическую обработку, в конечном счете, определяют значения амплитудных функций, определяющих собственные формы колебаний конструкции в каждой заданной точке Вj. Технический результат: исключение измерения величины возбуждающего воздействия. 2 ил.

 

Изобретение относится к экспериментальным методам определения характеристик собственных колебаний машиностроительных конструкций и может найти применение в различных отраслях машиностроения.

Основными характеристиками собственных колебаний конструкции (модальными параметрами) являются собственные частоты колебаний, собственные формы колебаний и коэффициенты демпфирования. Через модальные параметры записывается решение задачи о колебаниях упругой конструкции под действием произвольной возмущающей силы. Собственные формы колебаний тесно связаны с эквивалентными массами конструкции: зная собственные формы колебаний конструкции, можно определить ее эквивалентные массы, а зная эквивалентные массы конструкции, соответствующие различным точкам, можно определить собственные формы колебаний. В случае упругих тел величины Мk определяются формулой

где ρ - плотность материала, ХK(А), ХK(O)- амплитуды колебаний точки наблюдения А и точки возбуждения О при колебаниях конструкции по k-той собственной форме (т.е. значения амплитудных функций в точках А и О), интегрирование производится по объему тела V в случае трехмерных тел, по площади тела - в случае двумерных тел (пластины, оболочки), по длине тела - в случае одномерных тел (стержни). Величины mK в работе [1] названы обобщенными массами, в работе [Генкин М.Д., Тарханов Г.В. Вибрация машиностроительных конструкций. - М.: Машиностроение, 1979, с.38.] - эквивалентными массами (но не отнесенными к точкам наблюдения и возбуждения).

Собственные формы колебаний упругого тела определяются с точностью до постоянного множителя. Это означает, что если ХK - амплитудная функция, определяющая его собственную форму колебаний, соответствующую собственной частоте ωk, то α·Хk - также является амплитудной функцией (а - любая константа). При определении амплитудной функции можно условно принять, что значение этой функции в некоторой точке А конструкции равно единице. Тогда если конструкция совершает колебания по k-той собственной форме, то значение этой функции в произвольной точке В определяется по формуле

где Хk(А), Хk(B) - амплитуды колебаний точек А и В.

Если известны эквивалентные массы конструкции, соответствующие k-той собственной частоте колебаний ωk двум точкам наблюдения А и В и точке возбуждения О, то значение k-той амплитудной функции в точке В можно определить по формуле (значение рассматриваемой функции в точке А принято за единицу)

Формула (2) показывает, что любой способ определения эквивалентных масс конструкции, соответствующих данной точке возбуждения и точке наблюдения, можно использовать для определения собственных форм колебаний конструкции.

Известен способ определения собственных форм колебаний конструкции [Вибрации в технике: Справочник. В 6-ти томах. - М.: Машиностроение, 1981, т.5, с.339.], согласно которому конструкцию подвергают многоточечному возбуждению и путем надлежащего выбора гармонических возмущающих сил с относительными фазовыми сдвигами 0° или 180° выделяют поочередно отдельно собственные тона и измеряют амплитуды колебаний отдельных точек конструкции при выделенных собственных формах колебаний.

Недостатком этого способа является быстрый износ конструкции вследствие длительных вибрационных испытаний в условиях резонанса и трудоемкость его осуществления.

Наиболее близким к заявляемому является способ определения собственных форм колебаний упругой конструкции (Патент №2058022, МКИ 6 G01М 7/02 - Способ определения эквивалентных масс упругой конструкции, соответствующих данной точке возбуждения и точке наблюдения / Вернигор В.Н. // Открытия. Изобретения. - 1996. - №10) в m заданных точках наблюдения Bj (j=1, 2, 3,...,m), при котором измеряют собственные частоты колебаний конструкции, возбуждают конструкцию на нескольких частотах, лежащих вне окрестности собственных частот.

Далее измеряют действительную часть динамической податливости конструкции и статическую податливость конструкции, при этом измеряют амплитуды изменения параметра наблюдения на каждой из частот возбуждения в каждой из m заданных точек, а также измеряют величину возбуждающего воздействия.

Из условия минимума специальной целевой функции определяют эквивалентные массы, соответствующие точке возбуждения и точкам наблюдения, а значение собственной формы колебаний в любой из заданных точек наблюдения определяют по формуле (2).

Недостатком данного способа является необходимость измерений динамической и статической податливости конструкции. Процедура таких измерений включает в себя измерение не только величины амплитуды изменения параметра наблюдения (виброперемещения, виброскорости, виброускорения, вибронапряжения), но и величины возбуждающего воздействия, что часто является невозможным по различным причинам, в частности по причине недоступности необходимых мест установки датчиков.

Технический результат, на достижение которого направлено изобретение, заключается в создании способа, исключающего измерение величины возбуждающего воздействия.

Для достижения названного технического результата в способе определения собственных форм колебаний упругой конструкции в m заданных точках наблюдения Вj (j=1, 2, 3,..., m) измеряют собственные частоты колебаний конструкции и возбуждают конструкцию на нескольких частотах, лежащих вне окрестности собственных частот.

Новым в заявляемом способе является то, что выбирают точку наблюдения А и измеряют амплитуды изменения параметра наблюдения на каждой из частот возбуждения в каждой из m заданных точек, а также в выбранной точке наблюдения А конструкции, при этом амплитуды изменения параметра наблюдения в каждой из m заданных точек Вj (j=1, 2, 3,..., m) и выбранной точке наблюдения А измеряют одновременно, определяют из условия минимума целевой функции

значения амплитудных функций , ηk(A), ηk(Bj), после чего определяют значения амплитудных функций, определяющих собственные формы колебаний конструкции в каждой заданной точке Bj:

где (k=2, 3,..., n),

y(A, Ωi) - амплитуда колебаний в выбранной точке наблюдения А конструкции, измеренная на частоте возбуждения Ωi (i=1, 2,......,N);

у(Bj, Ωi) - амплитуда колебаний в каждой из заданных Вj точек конструкции, измеренная на частоте возбуждения Ωi;

n - число определяемых форм колебаний;

N - число частот возбуждения;

- соотношение эквивалентных масс конструкции в точке наблюдения А и точке возбуждения О конструкции по k-той собственной форме колебаний

- соотношение эквивалентных масс конструкции в точке наблюдения βj, и точке возбуждения О конструкции по k-той собственной форме колебаний.

На прилагаемых фиг.1, 2 изображен рассматриваемый в качестве примера образец, закрепленный за широкий конец.

Способ определения собственных форм колебаний упругой конструкции осуществляется следующим образом.

Измеряют n собственных частот ωi, ω2,...,ωn колебаний конструкции. Затем N раз возбуждают конструкцию на нескольких частотах, лежащих вне окрестности собственных частот ω1, ω2,...,, вызывая ее гармонические колебания с частотами возбуждения Ω1, Ω2,..., ΩN. Выбирают точку наблюдения А и измеряют амплитуды изменения параметра наблюдения (виброперемещения виброскорости, виброускорения, вибронапряжения) на каждой из частот возбуждения Ω1, Ω2,... ΩN, в каждой из m заданных точек Вj (j=1, 2, 3,...,m) и в выбранной точке наблюдения А конструкции. Амплитуды изменения параметра наблюдения в заданных точках Вj и выбранной точке А наблюдения измеряют одновременно.

Определяют из условия минимума целевой функции

значения величин , ηk(A), ηk(Bj),

после этого определяют значения амплитудных функций, определяющих собственные формы колебаний конструкции в каждой заданной точке Вj:

где (k=2, 3,..., n),

y(A, Ωi) - амплитуда колебаний в выбранной точке наблюдения А конструкции, измеренная на частоте возбуждения Ωi (i=1, 2,......,N);

y(Bj, Ωi) - амплитуда колебаний в каждой из заданных Вj точек конструкции, измеренная на частоте возбуждения Ωi;

n - число определяемых форм колебаний;

N - число частот возбуждения;

- соотношение эквивалентных масс конструкции в точке наблюдения А и точке возбуждения О конструкции по k-той собственной форме колебаний

- соотношение эквивалентных масс конструкции в точке наблюдения Bj и точке возбуждения О конструкции по k-той собственной форме колебаний.

В процессе минимизации используемой целевой функции происходит сглаживание экспериментальных данных (i=1, 2,..., N) по отношению амплитуд изменения параметра наблюдения (виброперемещения, виброскорости, виброускорения, вибронапряжения) в двух точках А и В конструкции методом наименьших квадратов. Причем в качестве базовой зависимости отношения от частоты возбуждения Ω принята зависимость

в то время как точная зависимость имеет вид

Выбор такой базовой зависимости и целевой функции позволяет при определении эквивалентных масс полностью учесть первые n форм колебаний конструкции.

Собственные частоты колебаний ωk и амплитуду изменения параметра наблюдения (виброперемещения, виброскорости, виброускорения, вибронапряжения) измеряют, например, виброизмерительным комплексом АВДИ-1 [1].

Величины определяют из условия минимума целевой функции например, на основе вычислительных комплексов Maple, МАТЕМАТИКА.

ПРИМЕР.

Рассмотрены поперечные колебания жестко закрепленного образца, изображенного на фиг.1, 2. В расчетах образец был закреплен за свой широкий конец. При этом область образца, совершающая колебания (рабочая часть образца), представляла собой прямоугольный брус размером 0,110×0,015×0,0025 м. Для получения контрольных результатов на основе вычислительного комплекса ANSYS был выполнен модальный анализ и получены собственные частоты и формы колебаний образца. Первые две собственные частоты колебаний оказались равными ωi=142,18 Гц, ω2=926,33 Гц. При определении значений амплитуд колебаний образца было условно принято, что амплитуда колебаний точки А, расположенной в середине верхней границы крайнего поперечного сечения бруса (см. фиг.1, 2), равна единице. При этом амплитуда колебаний точки В, расположенной в середине средней линии верхней грани рабочей части образца (см. фиг.1, 2), оказалась равной

Для проверки данного изобретения был выполнен численный эксперимент, в котором вычислительным комплексом ANSYS были определены амплитуды колебаний у(В, Ωi), у(А, Ωi) точек В и А под действием гармонической силы, приложенной в точке А перпендикулярно плоскости образца. Значения амплитуд были вычислены при различных частотах возбуждения Ωi. Значения этих частот и результаты вычислений представлены в таблице.

Таблица
Номер частоты возбуждения NЧастота возбуждения Ωi, Гцy(A, Ωi), му(В, Ωi), м
1400,1533Е-30,6191Е-4
2600,1713E-30,6962Е-4
3800,2052Е-30,8417Е-4
41000,2762Е-30,1146Е-3
51200,4823Е-30,2030Е-3
6200-0,1365E-3-0,6256Е-4
7260-0,5448Е-4-0,2752Е-4
8300-0,3554Е-4-0,1951E-4
98200,1163Е-4-0,1160E-4
107400,4494Е-5-0,8140Е-5
116600,6502Е-6-0,7212Е-5
121040-0,1456Е-40,6825Е-5
131140-0,7847Е-50,3037Е-5

Далее согласно описанию изобретения была составлены целевая функция и определены значения величин , η2(A), η2(B), при которых эта функция достигает минимума. В результате расчетов получены следующие значения амплитуд колебаний точки В: (первая форма), (вторая форма). Сравнение данных результатов с контрольными значениями показывает, что погрешность определения амплитуд колебаний точки на основе предложенного изобретения является вполне удовлетворительной: по первой форме она составляет 0,07%, по второй - 0,4%.

Способ определения собственных форм колебаний упругой конструкции в m заданных точках наблюдения Bj (j=1, 2, 3,..., m), при котором измеряют собственные частоты колебаний конструкции, возбуждают конструкцию на нескольких частотах, лежащих вне окрестности собственных частот, отличающийся тем, что выбирают точку наблюдения А и измеряют амплитуды изменения параметра наблюдения на каждой из частот возбуждения в каждой из m заданных точек, а также в выбранной точке наблюдения А конструкции, при этом амплитуды изменения параметра наблюдения в каждой из m заданных точек Bj (j=1, 2, 3,..., m) и выбранной точке наблюдения А измеряют одновременно, определяют из условия минимума целевой функции

значения амплитудных функций , ηk(A), ηk(Bj), после чего определяют значения амплитудных функций, определяющих собственные формы колебаний конструкции в каждой заданной точке Bj:

,

где k=2, 3,...,n;

у(А, Ωi) - амплитуда колебаний в выбранной точке наблюдения А конструкции, измеренная на частоте возбуждения Qi (i=1, 2,..., N};

у(Bj, Qi) - амплитуда колебаний в каждой из заданных Bj точек конструкции, измеренная на частоте возбуждения Ωi;

n - число определяемых форм колебаний;

N - число частот возбуждения;

- соотношение эквивалентных масс конструкции в точке наблюдения А и точке возбуждения О конструкции по k-й собственной форме колебаний;

- соотношение эквивалентных масс конструкции в точке наблюдения Bj и точке возбуждения О конструкции по k-й собственной форме колебаний.



 

Похожие патенты:

Изобретение относится к приборам для измерения акустических сигналов. .

Изобретение относится к измерительной технике и может быть использовано в системах автоматики и сигнализации, а также для проверки исправности тормозной системы транспортных средств.

Изобретение относится к области пчеловодства и может найти применение в практической работе на индивидуальных и коллективных пасеках. .

Изобретение относится к измерению механических колебаний и может быть использовано в системах автоматики и сигнализации, а именно для определения опасных вибраций при воздействии их на человека.

Изобретение относится к машиностроительной акустике и может быть использовано при определении акустических характеристик, в частности импеданса различных гидравлических устройств, например насосов и трубопроводных систем.

Изобретение относится к измерительной технике и может быть использовано в системах автоматики и сигнализации, а также для проверки исправности тормозной системы транспортных средств.

Изобретение относится к прогнозированию характеристик собственных частот в подсистеме трубок, включающей закрытые кожухом сильфонные компоненты. .

Изобретение относится к измерительной технике и может быть использовано для диагностики помпажа - продольных автоколебаний, несанкционированно возникающих в компрессорах газотурбинных установок, а также для оценки параметров помпажных колебаний.

Изобретение относится к области измерительной техники, в частности к способам бесконтактного измерения асинхронных колебаний вращающихся тел, таких, например, как лопатки турбин.

Изобретение относится к области измерительной техники и может быть использовано, в частности, в балансировочных станках, динамометрах, акселерометрах и других приборах и оборудовании

Изобретение относится к измерительной технике и может быть использовано для бесконтактной и дистанционной регистрации вибраций и перемещений поверхности, способной отражать радиоволны

Изобретение относится к способам и устройствам для измерения частоты колебаний мультикантилевера

Изобретение относится к способу и устройству для обнаружения механических воздействий импульсного типа на компонент установки

Изобретение относится к контрольно-измерительной технике и может быть использовано для бесконтактного измерения и непрерывного контроля амплитуды колебаний турбинных и компрессорных лопаток в эксплуатационных условиях

Изобретение относится к области контрольно-измерительной техники

Изобретение относится к измерительной технике и может быть использовано в системах автоматики и сигнализации, а также для проверки исправности тормозной системы транспортных средств и предупреждения их опрокидывания

Изобретение относится к области проверки метрологических характеристик виброизмерительных преобразователей (датчиков) и определения возможности их дальнейшего использования без демонтажа с объекта эксплуатации
Наверх