Устройство модуляции амплитуды и фазы многочастотных сигналов

Изобретение относится к радиосвязи и может быть использовано для формирования фазоманипулированных, амплитудно-манипулированных, а также амплитудно-фазоманипулированных сигналов. Достигаемый технический результат - одновременное обеспечение требуемых разных законов изменения амплитуды и фазы как отраженного, так и проходного сигналов с предельными характеристиками на заданном количестве фиксированных частот. Устройство содержит источник низкочастотного управляющего сигнала, циркулятор, первое плечо которого является высокочастотным входом для многочастотных сигналов, реактивный четырехполюсник, который включен во второе плечо циркулятора, полупроводниковый диод, который включен параллельно источнику низкочастотного управляющего сигнала, при этом реактивный четырехполюсник выполнен в виде соединения трех реактивных двухполюсников, параметры реактивных элементов которых выбраны из условия обеспечения заданных различных отношений модулей и разностей фаз коэффициентов передачи и отражения на заданном количестве частот интерполяции требуемых амплитудно-частотных и фазочастотных характеристик в двух состояниях полупроводникового диода, определяемых крайними уровнями низкочастотного управляющего сигнала. 6 ил.

 

Изобретение относится к радиосвязи и может быть использовано для формирования фазоманипулированных, амплитудно-манипулированных, а также амплитудно-фазоманипулированных сигналов.

Известно устройство модуляции амплитуды и фазы, состоящее из циркулятора, первый вход которого подключен к источнику сигнала, третий вход подключен к нагрузке, а второй подключен к отрезку разомкнутой линии передачи длиной λ/4, вначале которой включен p-i-n диод [Радиопередающие устройства. / Под редакцией О.А.Челнокова, - М.: Радио и связь, 1982, стр.152-156].

Если диод закрыт, то от сечения, в котором он включен, происходит отражение, отраженная волна попадает в нагрузку с сопротивлением 50 Ом. Если диод открыт, то отражение происходит от конца линии. Фаза отраженного сигнала в одном состоянии диода отличается от фазы отраженного сигнала в другом состоянии диода на π. При необходимости изменения разности фаз длина отрезка линии передачи изменяется соответствующим образом.

Недостатком этого устройства является то, что в двух состояниях диода изменяется только фаза отраженного сигнала, причем заданные значения разности фаз отраженного сигнала в двух состояниях диода обеспечивается только на одной фиксированной частоте. Другим недостатком является постоянство амплитуды отраженного сигнала в двух состояниях диода, то есть отсутствие манипуляции амплитуды, что сужает функциональные возможности. Например, это не позволяет обеспечить два канала радиосвязи на одной несущей частоте [один канал можно образовать с помощью манипуляции амплитуды, а другой с помощью манипуляции фазы, или не позволяет обеспечить кодировку передаваемой информации]. Третьим недостатком следует считать большие массы и габариты, связанные с необходимостью использования отрезков линии передачи. Четвертым недостатком является то, что устройство манипуляции, состоящее из управляемой и неуправляемой частей, включается между источником сигнала и нагрузкой, которые имеют определенные значения сопротивлений. Источник сигнала имеет чисто действительное сопротивление (второй вход). Нагрузка для отраженного сигнала (третий вход) имеет также действительное сопротивление. Манипулятор подключен к разомкнутой (бесконечное сопротивление) или замкнутой к (нулевое сопротивление) линии передачи. Следующим важным недостатком является то, что данное устройство не обеспечивают манипуляцию амплитуды и фазы проходного сигнала.

Известно устройство модуляции, состоящее из определенного количества реактивных элементов типа L, C, параметры которых выбраны из условия обеспечения требуемой произвольной разности фаз коэффициента отражения [В.Г.Соколинский, В.Г.Шейнкман. Частотные и фазовые модуляторы и манипуляторы. - М.: Радио и связь, 1983, стр.146-158].

По сравнению с предыдущими устройствами данное устройство не требуют использования полупроводниковых диодов только в открытом и только закрытом состояниях. При любых состояниях диодов, определяемых двумя уровнями низкочастотного управляющего воздействия, при определенных значениях параметров типа L, C может быть обеспечена заданное значение разности фаз отраженного сигнала на фиксированной частоте. Если амплитуда управляющего низкочастотного сигнала между указанными двумя уровнями изменяется непрерывно, то обеспечивается модуляция.

Основными недостатками устройства являются отсутствие возможности обеспечения требуемых значений разности фаз и отношения модулей коэффициентов отражения в двух состояниях управляемого элемента на двух и более частотах. Другим недостатком является то что, как и первое устройство, манипулятор может быть включен только между определенными сопротивлениями. Следующим важным недостатком является то, что данное устройство не обеспечивают манипуляцию амплитуды и фазы проходного сигнала.

Известно устройство (прототип) [Головков А.А. Устройство для модуляции отраженного сигнала. Авт. св-во №1800579 от 09.10 1992 года], содержащее циркулятор, первое и третье плечи которого являются СВЧ входом и выходом, а во второе плечо включены реактивный четырехполюсник и полупроводниковый диод, подключенный к источнику низкочастотного управляющего воздействия, при этом четерехполюсник выполнен в виде Т-образного соединения двухполюсников со значениями реактивных сопротивлений, которые выбраны из условия обеспечения требуемых одинаковых законов двухуровневого изменения амплитуды и фазы отраженного сигнала на двух заданных частотах. Также как и в предыдущем устройстве модуляции возможна модуляция фазы и амплитуды, если управляющий сигнал изменяется непрерывно. При этом амплитуда и фаза проходного сигнала изменяется по неизвестному закону или совсем не изменяется.

К основным недостаткам данного устройства относятся отсутствие возможности реализации разных заданных законов изменения амплитуды и фазы отраженного сигнала на двух и более заданных значениях частот, что уменьшает функциональные возможности и объем передаваемой информации. Другим недостатком является то, что, как и в первых двух устройствах, манипулятор может быть включен только между определенными сопротивлениями. Следующим важным недостатком является то, что данное устройство не обеспечивает заданные законы манипуляции амплитуды и фазы проходного сигнала.

На рассмотрении экспертизы находятся заявленные устройства модуляции для случая включения управляемого элемента в продольную цепь между реактивным четырехполюсником и источником модулирующего сигнала. Место включения источника модулирующего сигнала значения не имеет. Однако место включения управляемого элемента имеет большое значение. В общем случае для заданной конкретной нагрузки существует вполне определенное место включенного управляемого элемента, при котором достигаются наибольшие глубина амплитудной модуляции, девиация фазы и широкополосность.

В данной заявке на изобретение авторы показывают возможность достижения предельных характеристик при включении управляемого элемента в поперечную цепь между источником несущего сигнала и четырехполюсником.

Техническим результатом изобретения является одновременное обеспечение требуемых разных законов изменения амплитуды и фазы как отраженного, так и проходного сигналов с предельными характеристиками на заданном количестве фиксированных частот при включении манипулятора между произвольными сопротивлениями и включении управляемого элемента в поперечную цепь между источником несущего сигнала и четырехполюсником.

Указанный результат достигается тем, что в устройстве модуляции амплитуды и фазы многочастотных сигналов, содержащем источник несущих сигналов, циркулятор, первое и третье плечо которого являются сверхвысокочастотным входом и выходом, а ко второму плечу подключен вход реактивного четырехполюсника, полупроводниковый диод и источник низкочастотного управляющего напряжения, дополнительно четырехполюсник выполнен в виде произвольного соединения трех реактивных двухполюсников, полупроводниковый диод включен в поперечную цепь между источником несущего сигнала и входом четырехполюсника, параллельно диоду подключен источник низкочастотного управляющего сигнала, сопротивление источника сигналов выбрано произвольным, к выходу четырехполюсника включена нагрузка для проходного СВЧ сигнала с произвольными сопротивлениями на заданном количестве частот интерполяции требуемых частотных характеристик, двухполюсники выполнены из произвольным образом соединенных между собой реактивных элементов, количество которых выбрано не меньшим количества заданных частот интерполяции требуемых амплитудно-частотных и фазочастотных характеристик, а параметры реактивных элементов выбраны из условия одновременного обеспечения требуемых отношений модулей и разностей фаз коэффициентов отражения и передачи на заданном количестве частот в двух состояниях полупроводникового диода, определяемых двумя крайними уровнями управляющего сигнала.

На фиг.1 показана схема устройства модуляции амплитуды и фазы сигналов, реализующее устройство-прототип.

На фиг.2 приведена схема предлагаемого устройства.

На фиг.3 приведена схема первого варианта реализации предлагаемого устройства модуляции амплитуды и фазы отраженного и проходного многочастотного сигнала, для случая n=1, 2 (n - количество частот интерполяции).

На фиг.4 изображена схема второго варианта реализации предлагаемого устройства модуляции амплитуды и фазы отраженного и проходного многочастотного сигнала, для случая n=1, 2.

На фиг.5 представлена схема третьего варианта реализации предлагаемого устройства модуляции амплитуды и фазы отраженного и проходного многочастотного сигнала, для случая n=1, 2, 3.

На фиг.6 сформирована схема четвертого варианта реализации предлагаемого устройства модуляции амплитуды и фазы отраженного и проходного многочастотного сигнала, для случая n=1, 2, 3.

Устройство-прототип содержит циркулятор 1 с входным 2, нагрузочным 3 и выходным 4 плечами, три двухполюсника 5, 6, 7 с реактивными сопротивлениями x1, x2, x3, соединенных между собой по Т-схеме, а также полупроводниковый диод 8, подключенный параллельно к источнику сигнала модуляции 9, двухполюсник 7 подключен к диоду 8, двухполюсник 5 - к нагрузочному плечу 3 циркулятора 1.

Принцип действия устройства манипуляции параметров сигнала, реализующего устройство-прототип состоит в следующем.

Сигнал от задающего генератора (на фиг.1 не показан) через входное плечо 2 циркулятора 1 поступает в нагрузочное плечо 3. В результате взаимодействия пришедшего сигнала с реактивными элементами и диодом и благодаря специальному выбору значений реактивных элементов двухполюсников, значения фаз и амплитуд отраженных сигналов на двух частотах оказывается такими, что в результате их интерференции на выходное плечо 4 циркулятора 1 поступают сигналы, амплитуда и фаза которых в одном состоянии диода 8, определяемом одним крайним значением сигнала модуляции источника 9 отличаются от амплитуды и фазы этих сигналов в другом состоянии диода 8 на одинаковые заданные величины на соответствующих двух частотах. Максимальная девиация фазы может составлять 360°, минимальная - ноль, максимальное отношение амплитуд равно ∞.

Предлагаемое устройство и четыре варианта его реализации (фиг.3-6) содержат циркулятор с входным 2, нагрузочным 3 и выходным 4 плечами, четырехполюсник и три двухполюсника 5, 6, 7 с реактивными сопротивлениями x1n, x2n, x3n соединенных между собой по Т или П-схеме, а также полупроводниковый диод 8, включенный в поперечную цепь между плечом 3 и четырехполюсником и подключенный параллельно к источнику сигнала модуляции 9, двухполюсник 5 подключен к диоду 8, двухполюсник 7 - к нагрузке 10 для проходного сигнала. Нагрузкой для отраженного сигнала является плечо 4. Плечо 3 по существу является для четырехполюсника источником сигнала. Нагрузкой может является например, антенна.

Эти устройства функционирует следующим образом. Благодаря специальному выбору количества реактивных элементов двухполюсников, схемы их соединений и значений их параметров при переключении управляющего (модулирующего) сигнала на диоде будет одновременно происходить манипуляция амплитуды и фазы как отраженного, так и проходного сигнала на заданном количестве частот в общем случае различными законами двухуровневого изменения амплитуды и фазы на каждой из частот. При непрерывном изменении амплитуды управляющего сигнала будет реализована модуляция амплитуды и фазы отраженного и проходного сигнала по амплитуде и фазе в общем случае по произвольным заданным законам.

Докажем возможность реализации указанных свойств.

Пусть на фиксированной частоте известны сопротивления источника сигнала Z0=r0+jX0 и антенны ZH=rH+jXH, а также проводимость управляемого элемента y1,n=g1,n+jb1,n в первом и n-м состояниях, определяемых уровнями управляющего низкочастотного сигнала (тока или напряжется), n=2, 3, ..., N. Управляемый элемент включен в поперечную цепь между источником сигнала и согласующе-фильтрующим устройством(СФУ). Как и в [Головков А.А., Минаков В.Г. Алгоритмы синтеза согласующе-фильтрующих устройств многоуровневых амплитудно-фазовых манипуляторов на основе использования матрицы сопротивления. Телекоммуникации, 2004, №8 с.29-32.] требуется определить структуру схемы СФУ, минимальное количество реактивных элементов и значения их параметров, при которых переключение состояний управляемого элемента приводило бы к изменениям модуля и фазы коэффициентов передачи и отражения по следующим законам:

где - требуемые отношения модулей и разности фаз коэффициентов передачи , и отражения , в первом и n-м состояниях управляемого элемента. Проводя соответствующие математические операции [Головков А.А., Минаков В.Г. Алгоритмы синтеза согласующе-фильтрующих устройств многоуровневых амплитудно-фазовых манипуляторов на основе использования матрицы сопротивления. Телекоммуникации, 2004, №8 с.29-32.], получим выражения для нормированных матриц передачи всего устройство в каждом из состояний:

где - определитель матрицы сопротивлений СФУ; х11, x21, х12 - элементы матрицы сопротивлений:

Используя известные взаимосвязи между элементами матриц передачи и рассеяния [Фельдштейн А.Л., Явич Л.Р. Синтез четырехполюсников и восьмиполюсников на СВЧ. М.: Связь, 1991, 388 с], получим выражения для коэффициентов передачи и отражения:

Для получения исходных для синтеза СФУ взаимосвязей между элементами матрицы сопротивлений (4), оптимальных по критерию обеспечения требуемого закона изменения амплитуды и фазы приходного сигнала, подставим (5) в (1). Получим систему двух уравнений в виде соответствующих равенств действительных и мнимых составляющих левой и правой частей (1), которые запишем в следующем виде:

где

Решение системы (7) имеет вид следующих взаимосвязей:

где

.

Полученные взаимосвязи (соотношения)(8) между элементами матрицы сопротивлений СФУ являются исходными для параметрического синтеза. Для определения значений параметров, оптимальных по критерию обеспечения требуемых величин m1n и ϕ1n, необходимо взять пробную схему, найти элементы ее матрицы сопротивлений, выраженные через параметры этой схемы, и подставим их в (8). Сформированную таким образом систему двух уравнений надо решить относительно двух выбранных параметров. Остальные параметры могут быть отнесены к управляемой части, а их значения выбраны произвольно или исходя из увеличения диапазона изменения величин m1n, ϕ1n, в пределах которых схема СФУ является физически реализуемой.

Поскольку , то подкоренное выражение в (8) положительно при D1<0, из этого неравенства следует условие физической реализуемости в виде ограничения на ϕ1n.

а также ограничения на , вытекающего из неравенства

где

- мера различия суммарной проводимости параллельно соединенных управляемой части манипулятора и источника сигнала - названная качеством [Головков А.А., Минаков В.Г. Алгоритмы синтеза согласующе-фильтрующих устройств многоуровневых амплитудно-фазовых манипуляторов на основе использования матрицы сопротивления. Телекоммуникации, 2004, №8, с.29-32].

Анализ полученных выражений (8)-(10) показывает, что они могу быть получены из выражений, приведенных в [там же], путем следующей двойственной перестановки:

Для получения исходных для синтеза СФУ взаимосвязей между элементами матрицы сопротивлений, оптимальных по критерию обеспечения требуемого закона (2) изменения амплитуды и фазы отраженного сигнала как и в [там же] воспользуемся известным соотношением [Фельдштейн А.Л., Явич Л.Р. Синтез четырехполюсников и восьмиполюсников на СВЧ. М.: Связь, 1991, 388 с.]:

где Т21 - соответствующий элемент волновой матрицы передачи:

Как и в [Головков А.А., Минаков В.Г. Алгоритмы синтеза согласующе-фильтрующих устройств многоуровневых амплитудно-фазовых манипуляторов на основе использования матрицы сопротивления. Телекоммуникации, 2004, №8 с.29-32] подставим (12) в закон изменения модуля и фазы элемента Т21:

где ; θ1n1n - отношение модулей и разность фаз Т21 в первом и n-ом состояниях, заданные таким образом, чтобы получить требуемые отношения моделей W1n и разности ψ1n коэффициента отражения S11:

Таким образом, задано обеспечение требуемых значений W1n, Q1n, поскольку условия реализации величин m1n, ϕ1n в виде взаимосвязей (8) известны.

Для отыскания этих условий нет необходимости формировать и решать систему уравнений, аналогичную (7). Можно просто воспользоваться сформированной двойственной перестановкой (11), которая в данном случае принимает вид:

Используя (16) из [Головков А.А., Минаков В.Г. Алгоритмы синтеза согласующе-фильтрующих устройств многоуровневых амплитудно-фазовых манипуляторов на основе использования матрицы сопротивления. Телекоммуникации, 2004, №8, с.29-32], получим:

где

;

Условия физической реализуемости следуют из положительности подкоренного выражения (17) и сводятся к следующим ограничениям:

Таким образом, сформулированные двойственные перестановки (11), (16) позволяют значительно облегчить процесс получения оптимальных взаимосвязей между элементами матрицы сопротивлений для синтеза СФУ амплитудно-фазовых манипуляторов, у которых управляемый элемент включен между источником сигнала и СФУ, при известных оптимальных взаимосвязей, полученных для синтеза этих манипуляторов при включении управляемого элемента между СФУ и нагрузкой.

В соответствии с разработанными алгоритмами синтезированы простейшие схемы в виде Т-образного и П-образного соединений трех двухполюсников.

Для Т-образного соединения:

Для П-образного соединения:

В выражениях (19) и (20) элементы матрицы Х11, Х21, Х22 определяются взаимосвязями (8) и (16) или (15) и (16). Эти взаимосвязи дополняют известные взаимосвязи между элементами матрицы параметров, вытекающие из условий взаимности, симметрии, антиметрии, недиссипативности и унитарности, и расширяют возможности синтеза СФУ амплитудно-фазовых манипуляторов.

Структура схем определяется следующим образом. Если в формулах (19)-(20) Хkn>0 (k=1, 2, 3), то это индуктивность Lkn=Xknn, (ωn=2пfn). Если Хkn<0, то это емкость (k-номер двухполюсника).

Реализация требуемых частотных характеристик в двух состояниях легко может быть осуществлена путем интерполяции на двух, трех и т.д. частотах. Для этого необходимо каждый из двухполюсников, входящих в схему СФУ (фиг.3-6), сформировать из элементов L, С таким образом, чтобы он обеспечивал на заданных частотах требуемые значения сопротивлений, рассчитанные по формулам (19)-(20) для этих же частот. При этом коэффициенты D, Е, F также рассчитываются для соответствующей частоты, что учитывается ее номером n. Здесь приводятся два решения таких задач. Для двух заданных частот предлагается сформировать двухполюсники из последовательно соединенных между собой параллельного и последовательного колебательных контуров. Сопротивления такого двухполюсника на двух частотах определяется выражениями:

Решение системы двух уравнений (13) определяет параметры L1, C1 параллельного контура:

где k=1, 2 - номер двухполюсника; n=1, 2 - номер частоты. В выражениях (14) параметры L, C могут быть выбраны произвольно исходя из каких-либо физических соображений, например из условия обеспечения минимума отклонений заданных характеристик в заданной полосе частот, или исходя из условия физической реализуемости схем.

Для трех заданных частот предлагается формировать двухполюсники из последовательно соединенных емкости С0, параллельного контура L1, C1 и реактивного двухполюсника с сопротивлением jx0. При этом параметры определяются из решения системы трех уравнений:

Решение имеет вид:

Xk1=xk1-X01); Xk2=xk2-X02); Xk3=xk3-X03); Xk1, Xk2, Xk3 - реактивные сопротивления последовательно соединенных емкости С0 и параллельного колебательного контура с параметрами L1, C1; xk1, xk2, хk3 - реактивные сопротивления последовательно соединенных емкости С0, параллельного контура с параметрами L1, C1 и двухполюсника с реактивным сопротивлением x0 на трех заданных частотах, при этом двухполюсник с реактивным сопротивлением х0 формируется из произвольного количества соединенных любым образом реактивных элементов с произвольными значениями параметров L, С; ω1, ω2, ω3 - заданные фиксированные частоты.

Реактивное сопротивление jx0 двухполюсника формируется произвольным образом или исходя из каких-либо физических соображений, например, исходя из условия обеспечения минимума отклонений характеристик в полосе частот.

Полученные решения (21) и (23) для двух и трех заданных частот могут быть использованы как в П-образной схеме соединения двух двухполюсников, так и в Т-образной. Поэтому вариантов реализации предлагаемого устройства в настоящее время модуляции амплитуды и фазы многочастотных отраженных и проходных сигналов могут быть всего четыре.

Предлагаемые технические решения являются новыми, поскольку из общедоступных сведений неизвестно устройство манипуляции параметров многочастотных отраженных и проходных сигналов на заданном количестве частот, состоящее из определенным образом соединенных определенного количества реактивных элементов L, C с определенными по соответствующим математическим выражениям параметрами.

Предлагаемые технические решения имеют изобретательский уровень, поскольку из опубликованных научных данных и известных технических решений явным образом не следует, что заявленные последовательности выполнения устройства (формирование неуправляемой части определенным образом соединенных между собой двухполюсников из условия обеспечения двухуровневого изменения амплитуды и фазы отраженного и проходного сигналов на заданном количестве частот при изменении состояния управляемого элемента, включенного в поперечную цепь при произвольных значениях сопротивлений источника сигнала и нагрузок), а также варианты реализации в виде схем соединений элементов L, C, формирующих двухполюсник и математические выражения для определения их параметров одновременно обеспечивают реализацию требуемых разных законов изменения амплитуды и фазы отраженного и проходного сигналов на заданном количестве фиксированных частот при включении модулятора между произвольными сопротивлениями.

Предлагаемые технические решения практически применимы, так как для их реализации могут быть использованы полупроводниковые диоды, например p-i-n диоды, варикапы и т.д., серийно выпускаемые промышленностью индуктивности и емкости, сформированные в вариантах реализации схемы двухполюсников Т, П-образных соединений. Значения параметров емкостей и индуктивностей однозначно могут быть определены с помощью математических выражений, приведенных в описании изобретения.

Технико-экономическая эффективность предложенного устройства заключается в одновременной реализации требуемых разных законов изменения амплитуды и фазы отраженного и проходного сигналов на заданном количестве фиксированных частот интерполяции при включении модулятора между произвольными сопротивлениями.

Устройство модуляции амплитуды и фазы многочастотных сигналов, содержащее циркулятор, первое плечо которого является высокочастотным входом для многочастотных сигналов, а третье плечо - высокочастотным выходом для отраженных модулированных многочастотных сигналов, а во второе плечо включены реактивный четырехполюсник и полупроводниковый диод, параллельно подключенный к источнику низкочастотного управляющего сигнала, включенному в поперечную цепь, причем четырехполюсник выполнен в виде соединения трех реактивных двухполюсников, каждый из которых выполнен из реактивных элементов, количество реактивных элементов выбрано не меньшим, чем количество частот интерполяции требуемых амплитудночастотных и фазочастотных характеристик, параметры этих реактивных элементов выбраны из условия обеспечения заданных отношения модулей и разностей фаз коэффициентов передачи и отражения на заданном количестве частот интерполяции требуемых амплитудночастотных и фазочастотных характеристик, отличающееся тем, что сопротивления второго и третьего плеча выбраны комплексными, полупроводниковый диод включен в поперечную цепь, параллельно выходу четырехполюсника включена нагрузка для проходных модулированных многочастотных сигналов с комплексными сопротивлениями на двух заданных частотах, параметры реактивных элементов двухполюсников выбраны из условия обеспечения заданных различных отношений модулей и различных разностей фаз коэффициентов передачи и отражения на заданном количестве частот интерполяции требуемых амплитудночастотных и фазочастотных характеристик в двух состояниях полупроводникового диода, определяемых крайними уровнями низкочастотного управляющего сигнала.



 

Похожие патенты:

Изобретение относится к области радиотехники и может быть использовано в радиопередающих устройствах. .

Изобретение относится к области радиосвязи и может быть использовано для формирования сигналов с различными видами модуляции. .

Изобретение относится к области радиосвязи и может быть использовано для формирования фазоманипулированных, амплитудно-манипулированных и амплитудно-фазоманипулированных сигналов.

Изобретение относится к радиосвязи и может быть использовано для формирования фазоманипулированных, амплитудно-манипулированных, а также амплитудно-фазоманипулированных сигналов.

Изобретение относится к области радиотехники и может быть использовано в радиопередающих устройствах для формирования сигналов. .

Изобретение относится к технике связи и может использоваться в многоканальных системах связи. .

Изобретение относится к радиотехнике, в частности к устройствам, используемым для формирования сигналов в радиотелеметрическом канале связи, и предназначено для использования в составе устройств динамического кардиомониторинга.

Изобретение относится к радиовещанию. .

Изобретение относится к радиосвязи и может быть использовано для формирования фазоманипулированных, амплитудно-манипулированных, а также амплитудно-фазоманипулированных сигналов

Изобретение относится к радиосвязи и может быть использовано для формирования требуемых амплитудно-частотных и фазочастотных характеристик фазоманипулированных, амплитудно-манипулированных, а также амплитудно-фазоманипулированных сигналов в заданной полосе частот и преобразования частоты

Изобретение относится к радиосвязи и может быть использовано для формирования требуемых амплитудно-частотных характеристик и фазочастотных характеристик фазоманипулированных, амплитудно-манипулированных, а также амплитудно-фазоманипулированных сигналов в заданной полосе частот и преобразования частоты

Изобретение относится к радиосвязи и может быть использовано для формирования требуемых амплитудночастотных характеристик и фазочастотных характеристик фазоманипулированных, амплитудно-манипулированных, а также амплитудно-фазо-манипулированных сигналов в заданной полосе частот и преобразования частоты

Изобретение относится к радиосвязи и может быть использовано для формирования требуемых амплитудно-частотных и фазочастотных характеристик фазоманипулированных, амплитудно-манипулированных, а также амплитудно-фазо-манипулированных сигналов в заданной полосе частот и преобразования частоты

Изобретение относится к радиосвязи и может быть использовано для формирования требуемых амплитудно-частотных, фазочастотных характеристик фазоманипулированных, амплитудно-манипулированных сигналов, а также амплитудно-фазоманипулированных сигналов в заданной полосе частот и преобразования частоты

Изобретение относится к радиосвязи и может быть использовано для формирования требуемых амплитудно-частотных, фазочастотных характеристик фазоманипулированных, амплитудно-манипулированных сигналов, а также амплитудно-фазоманипулированных сигналов в заданной полосе частот и преобразования частоты

Изобретение относится к радиосвязи и может быть использовано для формирования требуемых амплитудно-частотных, фазочастотных характеристик фазоманипулированных, амплитудно-манипулированных сигналов, а также амплитудно-фазоманипулированных сигналов в заданной полосе частот и преобразования частоты

Изобретение относится к радиосвязи и может быть использовано для формирования фазоманипулированных, амплитудно-манипулированных, а также амплитудно-фазоманипулированных сигналов

Изобретение относится к радиосвязи и может быть использовано для формирования фазоманипулированных, амплитудно-манипулированных, а также амплитудно-фазоманипулированных сигналов
Наверх