Ультразвуковой способ определения угла ввода поперечных волн в двухслойных изделиях

Использование: для определения угла ввода поперечных волн в двухслойных изделиях. Сущность заключается в том, что определяют угол ввода поперечной волны α1 и скорость поверхностной волны CR1 в стандартном образце, и скорость поверхностной волны СR2 на контролируемом объекте, после чего вычисляют поправочный коэффициент k по отношению CR1/CR2 и определяют реальный угол ввода поперечной волны в объекте контроля по формуле:

αист=arcsin(α1·k),

где αист - реальный угол ввода поперечной волны в объекте контроля;

α1 - угол ввода поперечной волны, определенный по стандартному образцу;

k - поправочный коэффициент. Технический результат: повышение точности определения угла ввода поперечных волн в двухслойных изделиях. 2 ил.

 

Изобретение относится к области ультразвукового контроля изделий, в частности определения угла ввода поперечных волн при контроле двухслойных изделий, например прокатных валков.

Известен ультразвуковой способ определения угла ввода поперечных волн в изделиях, основанный на измерениях на стандартном образце СО-2 (ГОСТ 1472-78 «Ультразвуковой контроль», с.4).

Недостатком известного способа является низкая точность определения угла ввода, обусловленная разницей в скоростях поперечных волн в металле образца и объекта контроля.

Наиболее близким, принятым за прототип, является ультразвуковой способ определения угла ввода поперечных волн в двухслойных изделиях, в соответствии с которым значение угла ввода корректируют с учетом скорости волны в объекте контроля (Krautkramer, J. and Krautkramer, H., Ultrasonic Testing of Materials, third English edition, chapters 13 & 30, Springer Verlag, 1983).

Этот способ также характеризуется невысокой точностью определения угла ввода поперечных волн из-за неоднородности скорости ультразвука по глубине в двухслойных структурах, например в прокатных валках.

В настоящее время прокатные валки изготавливают двухслойными: сердцевину изготавливают из чугуна, а поверхностный (внешний) слой - из высоколегированных сталей. Такие валки характеризуются сильной неоднородностью по глубине, чем и обусловлена невысокая точность определения угла ввода поперечных волн. Скорость продольной волны в чугуне отличается от скорости в высоколегированной стали соответственно 4500 м/с и 5920 м/с. При определении скорости продольной волны по всему сечению получаем интегрированную оценку скорости, чем и обусловлена низкая точность определения угла ввода поперечных волн.

Техническим результатом изобретения является повышение точности определения угла ввода поперечных волн в двухслойных изделиях за счет измерения скорости волны непосредственно в поверхностном (внешнем) слое, в котором формируется угол ввода волны, что способствует повышению качества дефектоскопии двухслойных изделий.

Технический результат достигается тем, что в ультразвуковом способе определения угла ввода поперечных волн в двухслойных изделиях, например прокатных валках, в соответствии с которым определяют угол ввода поперечной волны α1 и поверхностной волны CR1 в стандартном образце, и скорость поверхностной волны СR2 на контролируемом объекте, после чего определяют поправочный коэффициент k по отношению СR1/CR2 и определяют реальный угол ввода в объекте контроля по формуле

αист=arcsin(k·α1),

где αист - реальный угол ввода поперечной волны в объекте контроля;

α1 - угол ввода поперечной волны, определенный по стандартному образцу;

k - поправочный коэффициент.

Для пояснения описываемого способа на чертеже приведена схема определения угла ввода: на фиг.1 - для стандартного образца; на фиг.2 - для контролируемого объекта.

Предложенный способ осуществляется следующим образом.

На стандартном образце (СО-2) 1 устанавливают преобразователь 2, излучающий поперечную волну, и устройство 3 для определения скорости поверхностной волны (фиг.1) и определяют угол α1 ввода поперечных волн, после чего на этом же образце измеряют скорость поверхностной волны СR1. Затем на объекте контроля 4 (на поверхности валка) также измеряют скорость поверхностной волны СR2 (фиг.2). Далее по соотношению k=СR1R2 вычисляют поправочный коэффициент и определяют истинный угол ввода по формуле

αист=arcsin(k·α1).

Предложенный ультразвуковой способ определения угла ввода поперечных волн в двухслойных изделиях позволяет повысить точность определения угла ввода поперечных волн на 30%. Это, в свою очередь, позволит с большей точностью определять координаты дефектов и предотвращать пропуск недопустимых дефектов, находящихся на границе рабочего слоя и ядра рабочего валка.

Ультразвуковой способ определения угла ввода поперечных волн в двухслойных изделиях, например прокатных валках, отличающийся тем, что определяют угол ввода поперечной волны α1 и скорость поверхностной волны CR1 в стандартном образце, и скорость поверхностной волны СR2 на контролируемом объекте, после чего вычисляют поправочный коэффициент k по отношению СR1R2 и определяют реальный угол ввода поперечной волны в объекте контроля по формуле

αист=arcsin(α1·k),

где αист - реальный угол ввода поперечной волны в объекте контроля;

α1 - угол ввода поперечной волны, определенный по стандартному образцу;

k - поправочный коэффициент.



 

Похожие патенты:

Изобретение относится к неразрушающему контролю ультразвуковым (УЗ) методом и может быть использовано для обнаружения дефектов в осях колесных пар железнодорожного подвижного состава.

Изобретение относится к способу контроля трубопроводов, в частности обнаружения дефектов в трубопроводах при помощи ультразвука, при котором во время пробега по трубопроводу сверхзвуковые сигналы излучаются преобразовательными элементами в стенки трубы и отраженные от различных поверхностей раздела звуковые сигналы обрабатываются для определения дефектов в стенках трубы, а также к устройству для контроля трубопроводов, в частности при помощи способа по пунктам 1-10 формулы изобретения, в частности как элемента аппарата, перемещаемого по трубопроводу для проходки трубопровода, включающего по меньшей мере один носитель сенсорного датчика с расположенными вокруг носителя сенсорного датчика преобразовательными элементами.

Изобретение относится к области исследования или анализа материалов путем определения их химических или физических свойств и, в частности, к исследованию или анализу материалов с помощью ультразвуковых, звуковых или инфразвуковых волн путем пропускания через них ультразвуковых или звуковых волн для обнаружения локальных дефектов в твердых телах.

Изобретение относится к области неразрушающего контроля с помощью ультразвуковых (УЗ) волн для визуализации внутреннего строения объекта и обнаружения внутренних дефектов, в частности, в сварных стыках рельсов.

Изобретение относится к методам неразрушающего контроля и может быть использовано для диагностики изделий по параметрам их механических колебаний, например, при дефектоскопии серийных изделий из различных материалов: металла, керамики, графита и других.

Изобретение относится к неразрушающему контролю материалов и может быть использовано при ультразвуковой (УЗ) дефектоскопии железнодорожных рельсов, в частности головки рельса.

Изобретение относится к области неразрушающего контроля строительных конструкций, преимущественно гидротехнических и гидромелиоративных сооружений, и может быть использовано для определения прочности бетона конструкций в процессе их строительства, реконструкции и эксплуатации.

Изобретение относится к области неразрушающего контроля, а именно к технологии возбуждения электромагнитно-акустических колебаний в электропроводящих материалах

Изобретение относится к области неразрушающего контроля, а именно к устройствам электромагнитно-акустической диагностики электропроводящих материалов, и может быть использовано при бесконтактном измерении толщины объекта контроля или параметров дефекта материала объекта

Изобретение относится к железнодорожному транспорту и касается неразрушающего контроля колесных пар грузовых вагонов

Изобретение относится к области диагностики состояния деталей узлов и агрегатов и может быть использовано для оценки остаточного ресурса деталей, в частности лопаток газотурбинных авиационных двигателей

Изобретение относится к области неразрушающего контроля, а именно к получению тест-образцов для настройки и оценки систем ультразвукового контроля

Изобретение относится к области неразрушающего контроля и технической диагностики

Изобретение относится к устройствам для внутритрубного неразрушающего контроля трубопроводов путем пропуска внутри трубопровода устройства, состоящего из одного или нескольких транспортных модулей с установленными на корпусе датчиками, точнее к устройству системы датчиков внутритрубного дефектоскопа
Наверх