Способ получения карбоксильного катионита

Изобретение относится к области получения слабокислотных карбоксильных катионитов макропористой структуры. Техническая задача - получение слабокислотного карбоксильного катионита с высокими значениями емкостных и прочностных характеристик: полная обменная емкость не менее 2,5 мг·экв/см3, динамическая обменная емкость не менее 1600 г·экв/м3, осмотическая стабильность не менее 98%. Высокие емкостные и прочностные характеристики достигаются за счет структуры полимерной матрицы и условий ее получения. Предложен способ получения слабокислотного карбоксильного катионита путем радикальной суспензионной сополимеризации нитрила акриловой кислоты и метилметакрилата с дивинилбензолом в качестве кроссагента, взятом в количестве 9÷12 мас.% при концентрации 50÷60%, в суспензионной среде в присутствии порообразователей (алкилбензина, авиационного керосина) в количестве 40 об.% от объема мономеров при нагревании и выдержке при температуре 50°С - 2 часа, 61°С - 2 часа, 65°С - 3 часа, 70°С - 2 часа, с последующим щелочным гидролизом нитрильных групп 25%-ным водным раствором едкого натрия с постепенным повышением температуры от 50 до 110°С и выдержкой при температуре 110°С в течение 10 часов.

 

Изобретение относится к области получения слабокислотных карбоксильных катионитов макропористой структуры, которые могут быть использованы в различных реакциях ионного обмена на тепловых и атомных электростанциях, в гидрометаллургии и т.д.

Известны способы получения карбоксильных катионитов, предназначенных для гидрометаллургии, например, на основе сополимера акрилонитрила и дивинилбензола путем гидролиза нитрильных групп водными растворами щелочей с концентрацией 10÷40% в присутствии аминопарафинов в качестве пеногасителя (см. авт. свид. СССР №431181, кл. МПК C08F 19/20, C08F 27/14, опубл. 29.11.74).

Известен также способ получения карбоксильного катионита, заключающийся в суспензионной сополимеризации акрилонитрила с дивинилбензолом в присутствии порообразователей, в качестве которых могут быть использованы алкилбензин, бензин БР-2, синтин, с последующим окислительным гидролизом нитрильных групп сополимера до карбоксильных путем обработки сополимера 25÷63% растворами азотной кислоты с добавкой и без добавки серной кислоты при температуре 105÷120°С (см. авт. свид. СССР №448193, кл. C08F 27/14, опубл. 16.05.75).

Недостатком описанных способов является то, что они не позволяют получить высокоемкие карбоксильные катиониты с хорошими прочностными характеристиками для процессов водоподготовки на тепловых и атомных электростанциях.

Заявляемое изобретение направлено на решение задачи создания слабокислотного карбоксильного катионита, имеющего полную обменную емкость не менее 2,5 мг·экв/см3, динамическую обменную емкость не менее 1600 г·экв/м3, осмотическую стабильность не менее 98%.

Поставленная задача решается путем получения макропористого сополимера акрилонитрила, метилметакрилата и дивинилбензола с последующим гидролизом нитрильных групп 25%-ным водным раствором едкого натрия.

Изобретение характеризуется следующей совокупностью признаков:

- проводят гранульную радикальную сополимеризацию акрилонитрила, метилметакрилата с дивинилбензолом в качестве сшивающего агента в присутствии порообразователей; при этом содержание основного вещества в кроссагенте (дивинилбензоле) 50÷60 мас.% и этилстирола 48÷38 мас.%; содержание кроссагента (сшивка) в сополимере - 9÷12%;

- в качестве порообразователей используется алкилбензин, авиационный керосин и др. в количестве 30÷50% от объема мономеров;

- с целью снижения растворимости акрилонитрила, образования его гомополимера, в качестве суспензионной среды используется 25%-ный водный раствор хлористого натрия или хлористого аммония с содержанием 1,5÷2,0 мас.% картофельного крахмала;

- соотношение углеводородной и суспензионной фаз 1:4;

- сополимеризацию проводят по следующему температурному режиму: 50°С - 2 часа, 61°С - 2 часа; 65°С - 3 часа, 70°С - 2 часа;

- щелочной гидролиз нитрильных групп проводят водным раствором едкого натрия при температуре 82°С - 1 час, 85°С - 3 часа, 95°С - 2 часа, 105-110°С - 8 часов.

Указанная совокупность существенных признаков позволяет получить слабокислотный карбоксильный катионит макропористой структуры с высоким значением осмотической стабильности (100%), полной обменной емкости (2,5÷2,6 мг·экв/см3), динамической обменной емкости (1800 ÷2200 г·экв/м3) за счет подбора и условий получения полимерной матрицы, подбора режима гидролиза нитрильных групп.

Предлагаемый способ получения карбоксильного катионита иллюстрируется следующими примерами.

Пример 1. А. 200 мл смеси, состоящей из 93,3 г акрилонитрила, 4,9 г метилметакрилата, 20,16 г дивинилбензола (9 мас.%) концентрации 52,7%, 57,1 мл алкилбензина (40 об.%), 3,46 г перекиси бензоила, при температуре 50°С загружают в 800 мл водной суспензионной среды, содержащей в своем составе 25% хлористого натрия и 1,7% картофельного крахмала.

Сополимеризацию проводят в следующем температурном режиме:

выдержка при температуре 50°С - 2 часа;

плавный подъем температуры до 61°С - 0,5 часа;

выдержка при температуре 61°С - 2 часа;

плавный подъем температуры до 65°С - 1 час;

выдержка при температуре 65°С - 2 часа;

плавный подъем температуры до 70°С - 0,5 часа;

выдержка при температуре 70°С - 2 часа.

Полученный сополимер отжимают от маточника, отпаривают острым паром от порообразователя и остаточных мономеров при температуре 100÷105°С в течение 6 часов.

Б. Высушенный сополимер, полученный по п. А, с гранулометрическим составом 0,25÷1,0 мм в количестве 100 г подвергают гидролизу 400 мл водного 25 мас.% раствора едкого натрия при следующем температурном режиме:

при температуре 82°С - 1 час;

при температуре 85°С - 3 часа;

при температуре 95°С - 2 часа;

при температуре 105÷110°С - 8 часов.

Реакционная масса (катионит) охлаждается до температуры 60°С и отмывается водой от щелочи до рН 7-8. Далее катионит переводится из Na+в H+ форму путем обработки его в течение трех часов 10÷12% раствором HCl при соотношении вес сополимера: объем кислоты как 1:3. Кислота отжимается и отмывается до рН 6-7.

Полученный катионит имеет осмотическую стабильность 100%, полную обменную емкость 2,5 мг·экв/см3, динамическую обменную емкость 2200 г·экв/м3, расход воды на отмывку от кислоты в процессе регенерации - 6 объемов на 1 объем смолы (катионита).

Пример 2. А. 200 мл смеси, состоящей из 91,3 г акрилонитрила, 4,8 г метилметакрилата, 22,1 г дивинилбензола (10 мас.%) концентрации 52,7%, 3,46 г перекиси бензоила, 57,1 мл алкилбензина загружают в 800 мл водной суспензионной среды, содержащей в своем составе 25% хлористого натрия и 1,7% картофельного крахмала.

Температурный и временной режим процесса сополимеризации осуществляют, как описано в примере 1.

Б. Высушенный сополимер, полученный по п. А, с гранулометрическим составом 0,25÷1,0 мм в количестве 100 г подвергают гидролизу и переводу в Н+ форму, как описано в примере 1.

Полученный катионит имеет осмотическую стабильность 100%, полную обменную емкость 2,6 мг·экв/см3, динамическую обменную емкость 2000 г·экв/м3, расход воды на отмывку от регенерирующего раствора составляет 8 объемов на 1 объем смолы (катионита).

Пример 3. А. 200 мл смеси, состоящей из 89,53 г акрилонитрила, 2,77 г (3 мас.%) метилметакрилата, 27,0 г дивинилбензола (12 мас.%) концентрации 52,7%, 3,46 г перекиси бензоила, 57,1 мл (40 об.%) алкилбензина при температуре 50°С загружают в 800 мл водной суспензионной среды, содержащей в своем составе 25% хлористого аммония и 2% картофельного крахмала. Температурный и временной режим процесса сополимеризации осуществляют, как описано в примере 1.

Б. Высушенный сополимер, полученный по п.А, с гранулометрическим составом 0,25÷1,0 мм в количестве 100 г подвергают гидролизу и переводу в H+ форму, как описано в примере 1.

Полученный катионит имеет осмотическую стабильность 100%, полную обменную емкость 2,6 мг·экв/см3, динамическую обменную емкость 1950 г·экв/м3, расход воды на отмывку от регенерирующего раствора - 7 объемов на 1 объем катионита.

Пример 4. А. 200 мл смеси, состоящей из 87,5 г акрилонитрила, 4,61 г (5 мас.%) метилметакрилата, 27,0 г дивинилбензола (12 мас.%) концентрации 52,7%, 3,46 г перекиси бензоила, 57,1 мл (40 об.%) алкилбензина при температуре 50°С загружают в 800 мл водной суспензионной среды, содержащей в своем составе 25% хлористого аммония и 2% картофельного крахмала. Температурный и временной режим процесса сополимеризации осуществляют, как описано в примере 1.

Б. Высушенный сополимер, полученный по п. А, с гранулометрическим составом 0,25÷1,0 мм в количестве 100 г подвергают гидролизу и переводу в Н+ форму, как описано в примере 1.

Полученный катионит имеет осмотическую стабильность 100%, полную обменную емкость 2,6 мг·экв/см3, динамическую обменную емкость 1900 г·экв/м3, расход воды на отмывку от регенерирующего раствора - 8 объемов на 1 объем катионита.

Пример 5. А. 200 мл смеси, состоящей из 84,74 г акрилонитрила, 7,37 г (8 мас.%) метилметакрилата, 27,0 г дивинилбензола (12 мас.%) концентрации 52,7%, 3,46 г перекиси бензоила, 57,1 мл (40 об.%) алкилбензина при температуре 50°С загружают в 800 мл водной суспензионной среды, содержащей в своем составе 25% хлористого аммония и 2% картофельного крахмала. Температурный и временной режим процесса сополимеризации осуществляют, как описано в примере 1.

Б. Высушенный сополимер, полученный по п.А, с гранулометрическим составом 0,25÷1,0 мм в количестве 100 г подвергают гидролизу и переводу в Н+ форму, как описано в примере 1.

Полученный катионит имеет осмотическую стабильность 100%, полную обменную емкость 2,6 мг·экв/см3, динамическую обменную емкость 1700 г·экв/м3, расход воды на отмывку от регенерирующего раствора - 14 объемов на 1 объем катионита.

Способ получения слабокислотных карбоксильных катионитов путем суспензионной сополимеризации нитрила акриловой кислоты, метилметакрилата и технического дивинилбензола концентрации 50÷60% в присутствии порообразователей с последующим гидролизом нитрильных групп, отличающийся тем, что сополимеризацию проводят с добавлением в полимеризационную смесь метилметакрилата в количестве 3÷8 мас.% при содержании дивинилбензола 9÷12 мас.% в присутствии порообразователей (алкилбензин, авиационный керосин) в количестве 40 об.% от объема мономеров в суспензионной среде, состоящей из воды, 25%-ного хлористого натрия или хлористого аммония и 1,5÷2,0%-ного картофельного крахмала, при нагревании при температуре 50°С - 2 ч, 61°С - 2 ч, 65°С - 3 ч, 70°С - 2 ч с последующим гидролизом нитрильных групп 25%-ным водным раствором едкого натрия при температуре 70°С - 1 ч, 80°С - 1 ч, 85°С - 3 ч, 95°С - 2 ч, 105-110°С - 8 ч.



 

Похожие патенты:

Изобретение относится к сополимеру или его фармакологически приемлемой соли, которые содержат в качестве образующих их элементарных звеньев (а) одно или несколько структурных элементарных звеньев, описываемых формулой (I), и (b) одно или несколько структурных звеньев, описываемых формулой (II), причем расположение структурных звеньев, представленных формулами (I) и (II), выбираются следующих последовательностей: (i) последовательность с чередованием «голова к голове», (ii) последовательность с чередованием «голова к хвосту», (iii) смешанная последовательность с чередованием «голова к голове» и «голова к хвосту», (iv) произвольная последовательность, с учетом того, что соотношение между структурными звеньями формулы (I) и структурными звеньями формулы (II) в указанном сополимере находится в диапазоне от 10:1 до 1:10.

Изобретение относится к способам гидролиза твердых полиэфиров и может быть использовано в различных областях промышленной и лабораторной химии, в частности в переработке некондиционного и вышедшего из употребления полимера в исходные мономеры, а также в аналитическом контроле и в исследованиях по разным направлениям.

Изобретение относится к гелеобразной водной композиции, содержащей блок-сополимер, в котором имеется по меньшей мере один водорастворимый блок и один гидрофобный блок.
Изобретение относится к способу получения порошкообразного гидролизованного полиакрилонитрила, используемого в качестве гидрофобизатора, стабилизатора, флокулянта, деэмульгатора, загустителя различных коллоидных дисперсий.

Изобретение относится к способам получения анионоактивного полиакриламида методом гидролиза. .

Изобретение относится к способу получения флокулирующего состава по безотходной технологии, используемого для интенсификации добычи нефти, а также в качестве флокулянтов при обработке сточных вод в химической, целлюлозно-бумажной, металлургической, горно-добывающей и других отраслях промышленности.

Изобретение относится к технологии модифицирования сополимеров этилена с винилацетатом путем их одновременного алкоголиза и сшивания алкоголятами натрия или калия, содержащими С<SB POS="POST">1</SB>-С<SB POS="POST">4</SB>-алканол, или растворами этих алкоголятов в соответствующем спирте при 343-523 К.

Изобретение относится к получеСтаГ илияация водорастворимым Узбекский химинию высокомолекулярных по1И1электролигов, применяемых р качестве добавок к буровым растворам при добыче нефти.

Изобретение относится к области получения низкоосновных макропористых анионитов полимеризационного типа, которые могут быть использованы в различных реакциях ионного обмена для водоподготовительных установок атомных и тепловых электростанций, сорбции металлов из растворов и рудных пульп.

Изобретение относится к новому химическому соединению, а именно сополимеру 1,2-диметил-5-винилпиридинийметилсульфата (1,2-ДМ-5-ВПМС) и акрилонитрила (АН), который может использоваться в качестве катионного флокулянта для ускорения процессов сгущения и фильтрации суспензий, очистки промышленных оборотных и сточных вод.

Изобретение относится к дендритной макромолекуле, включающей ядро и ответвления, идущие от ядра, отличающейся тем, что ответвления получают из винилцианидных групп.

Изобретение относится к нефтедобывающей промышленности и касается обработки буровых растворов при бурении на нефть и газ в обычных, глубоких и сверхглубоких скважинах при минерализации растворов ионами натрия, кальция и магния.
Изобретение относится к химии полимеров, в частности к способу получения сополимеров на основе акрилонитрила. .

Изобретение относится к области получения эмульсионных каучуков, в частности сополимеров бутадиена, винилиденхлорида и акрилонитрила, и может быть использовано в производстве резинотехнических изделий, работающих в среде топлив и масел, а также негорючих резинотехнических изделий, в частности в кабельной промышленности.

Изобретение относится к способу получения привитых сополимеров полиолефинов, в частности к способу привитой полимеризации мономеров на свободно-радикальных центрах основной цепи олефинового полимера, формируемых с помощью инициаторов свободно-радикальной полимеризации.

Изобретение относится к способу получения водных дисперсий сополимеров, таких как стирол-бутадиеновые, стирол-бутадиен-акрилатные, акрилонитрил-бутадиен-стирольные, широко используемые для изготовления покрытий, адгезивных композиций и композиций для импрегнирования.
Изобретение относится к сополимеру, одновременно выполняющему функцию связующего вещества и функцию модификатора реологии для водных суспензий пигментов и/или минеральных наполнителей, используему для того, чтобы получить гранулы пигментов и/или минеральных наполнителей, восстанавливаемые и сформированные из элементарных частиц с площадью удельной поверхности, определяемой по методу Брунауэра-Эммета-Теллера, находящейся в диапазоне от 0,5 до 200 м2/г, как определено в соответствии со стандартом ISO standart 9277, гранулы, которые легко повторно диспергировать в термопластических смолах, состоящих из мономерных звеньев а), b), с) и d), сумма которых равняется 100 массовых процентов.
Наверх