Способ получения биосовместимого покрытия на остеофиксаторах из титана

Изобретение относится к области медицинской техники. Изобретение касается способа получения биосовместимого покрытия на остеофиксаторах из титана. Формирование покрытия осуществляют путем оксидирования титана в атмосфере перегретого водяного пара при температуре 50-550°С в течение 1,5-2 ч. При этом из рабочего объема предварительно удаляют воздух подачей в него под давлением 3-4 атм перегретого пара, а сам процесс оксидирования осуществляют в среде перегретого чистого пара, подаваемого в рабочий объем под давлением 1,2-1,3 атм. После этого оксидированные титановые остеофиксаторы сначала охлаждают в печи в среде пара до температуры 250-300°С, а затем на воздухе до температуры 20-30°С. Способ позволяет получить оксидное биосовместимое покрытие, обладающее остеоинтеграционными качествами, с минимальными материальными и трудовыми затратами.

 

Изобретение относится к области медицинской техники и может использоваться при изготовлении различных остеофиксаторов с остеоинтеграционным биопокрытием.

Остеофиксаторы из титана представляют костные имплантаты временного функционирования, подлежащие удалению из организма по истечении периода лечения. В процессе приживления остеофиксаторов должно создаваться прочное соединение их поверхности с окружающей костной тканью и обеспечиваться неподвижность в кости при биомеханических нагрузках, что достигается за счет использования биопокрытия. При этом глубина остеоинтеграции покрытия должна быть ограниченной во избежание травмирования костной ткани при последующем удалении остеофиксатора.

Известны способы нанесения остеоинтеграционных покрытий на стоматологические и ортопедические имплантаты [1-3], однако они предназначены для формирования высокопористой гетерогенной структуры покрытия, обеспечивающей глубокую остеоинтеграцию с целью длительного функционирования имплантатов. Все эти способы не могут использоваться при нанесении покрытий на остеофиксаторы, так как приводят к последующему травмированию костной ткани и различным послеоперационным осложнениям. Процессы нанесения таких покрытий сложны, а используемые биоматериалы дорогостоящи.

Известен способ изготовления имплантатов для наружного чрескостного остеосинтеза, предусматривающий нанесение на имплантаты плазменным методом биоактивного гидроксиапатитового покрытия [4]. Получаемое данным способом покрытие ограничивает глубину прорастания костной ткани и снижает травматизацию при удалении имплантатов. Существенным недостатком способа является высокая трудоемкость изготовления имплантатов, сложный состав покрытия, наличие исходных дорогих биоматериалов.

Ближайшим прототипом, по мнению авторов, является способ оксидирования металлов и сплавов путем воздействия на них парогазовой средой при повышенной температуре, равной 375-575°С, при естественной циркуляции среды и парциальном давлении пара в процессе обработки не менее 10% от общего давления среды, представляющей собой воздушно-паровую смесь с добавлением газовых примесей из аммиака, углекислого газа, азота. Процесс оксидирования ведут в зависимости от состава обрабатываемого материала в течение времени от 1 ч до 20 ч. Данный способ позволяет получить оксидное покрытие с повышенными защитными свойствами и не позволяет получить покрытие с пористой структурой, ограничивающей глубину прорастания костной ткани и достаточной для биомеханического закрепления остеофиксатора в кости [5].

Задачей изобретения является создание биосовместимого покрытия на остеофиксаторах, обеспечивающего ограниченную глубину остеоинтеграции, достаточную для прочного закрепления фиксаторов в кости и снижающую травматизацию ткани при их удалении, а процесс формирования покрытия сделать простым и недорогим.

Поставленная задача решается путем оксидирования титановых остеофиксаторов в паровой среде при повышенной температуре, равной 500-550°С, в течение 1,5-2 ч. Перед оксидированием предварительно из рабочего объема печи удаляют воздух подачей в него под давлением 3-4 атм перегретого водяного пара, процесс оксидирования осуществляют в среде перегретого чистого пара, подаваемого в рабочий объем под давлением 1,2-1,3 атм, оксидированные остеофиксаторы сначала охлаждают в печи в среде пара до температуры 250-300°С, затем на воздухе до температуры 20-30°С. Данные условия оксидирования приводят к образованию на поверхности изделий оксидного покрытия из оксида титана (TiO2).

Сущность изобретения заключается в том, что для создания покрытия проводят оксидирование титановых остеофиксаторов в среде перегретого водяного пара при температуре 500-550°С, продолжительности процесса 1,5-2 ч. При этом в сформированном покрытии создаются большие внутренние напряжения, превышающие предел его прочности, вследствие чего происходит растрескивание и образование шероховатой структуры покрытия, а также открытых пор размером 12-16 мкм, обеспечивающих необходимые условия для интеграции остеофиксаторов, их закрепления в ткани и надежного функционирования. Получаемое покрытие состоит из оксида титана (TiO2), имеет толщину 40-50 мкм и поверхностную пористость 30%. Глубина интеграции костной ткани в поры такого покрытия составляет 25-30 мкм, что не вызывает существенного травмирования костных структур при удалении остеофиксаторов.

Пример. Предлагаемый способ осуществляется следующим образом. Берут готовый к формированию покрытия остеофиксатор, помещают его в печь нагревательной установки с температурой 500-550°С и продувают рабочий объем печи перегретым водяным паром при давлении 3-4 атм для удаления воздуха. Затем давление пара снижают до величины 1,2-1,3 атм и процесс ведут непрерывно в среде чистого водяного пара в течение 1,5-2 ч, после чего, не прекращая подачу пара, оксидированный остеофиксатор охлаждают в печи до температуры 250-300°С, после этого извлекают из печи и охлаждают на воздухе до температуры 20-30°С. Давление пара, равное 1,2-1,3 атм, позволяет избежать проникновение воздуха в рабочий объем через возможные неплотности соединений камеры печи, температура в печи 500-550°С и продолжительность оксидирования 1,5-2 ч обеспечивают формирование заданных параметров толщины и поверхностной структуры покрытия, последовательное охлаждение титановых остеофиксаторов сначала в печи, затем на воздухе определяет получение однородного фазово-структурного состояния покрытия, в наилучшей степени способствующего адаптации остеофиксаторов в кости. Толщина получаемого покрытия из оксида титана (TiO2) составляет 40-50 мкм. Поверхностная структура покрытия характеризуется шероховатым рельефом и наличием открытых пор размером 12-16 мкм, являющихся следствием разрыва покрытия на фрагменты из-за возникших в нем внутренних напряжений в процессе оксидирования. При этом глубина пор в покрытии находится в пределах 25-30 мкм, что обеспечивает остеоинтеграцию на указанное расстояние по толщине покрытия.

Положительный эффект достигается за счет формирования оксидного покрытия на остеофиксаторах из титана марок ВТ1-0, ВТ1-00, ВТ-16 с определенной толщиной, размером и глубиной открытых пор, обеспечивающих проникновение костных структур на заданное расстояние от поверхности покрытия.

Источники информации

1. Патент РФ №2158189, 1999 г. Способ нанесения гидроксиапатитовых покрытий.

2. А.с. №19950910. Биоактивное покрытие на имплантат из титана.

3. Патент РФ №2194536, 1999 г. Способ формирования биоактивного покрытия на имплантат.

4. Патент РФ №2134082, 1997 г. Способ изготовления имплантатов для наружного чрескостного остеосинтеза.

5. Патент РФ №2189400, 2002 г. Способ оксидирования металлов и сплавов и устройство для его реализации.

Способ получения биосовместимого покрытия на остеофиксаторах из титана путем оксидирования остеофиксаторов в паровой среде при повышенной температуре, равной 500-550°С, в течение 1,5-2 ч, отличающийся тем, что предварительно из рабочего объема удаляют воздух подачей в него под давлением 3-4 атм перегретого пара, процесс оксидирования осуществляют в среде перегретого чистого пара, подаваемого в рабочий объем под давлением 1,2-1,3 атм, оксидированные титановые остеофиксаторы сначала охлаждают в печи в среде пара до температуры 250-300°С, затем на воздухе до температуры 20-30°С.



 

Похожие патенты:
Изобретение относится к области медицины и касается производства материалов, используемых в травматологии, ортопедии, челюстно-лицевой хирургии и хирургической стоматологии.
Изобретение относится к области медицины, а именно к ортопедии и травматологии. .

Изобретение относится к медицине и медицинской технике, к челюстно-лицевой, черепно-мозговой или эстетической хирургии, стоматологии, онкостоматологии, травматологии.

Изобретение относится к медицине, а именно к хирургическому лечению переломов и дефектов костной ткани. .

Изобретение относится к медицине, а именно к артрологии, и может быть использовано для лечения дегенеративно-дистрофических и посттравматических деформирующих артрозов и иных деформирующих повреждений суставов.

Изобретение относится к области биологического материаловедения разделов медицины: хирургия, травматология, ортопедия и может быть использовано при реконструкционно-хирургических вмешательствах на разных отделках скелета, в т.

Изобретение относится к медицинской промышленности, в частности к технологии изготовления глазных протезов из стекла, предназначенных для протезирования лиц, лишенных одного или обоих глаз, а также при наличии атрофированного глазного яблока или глаза с бельмом, в лечебно-косметических целях.
Изобретение относится к медицине. .
Изобретение относится к области медицинской техники и может использоваться при изготовлении поверхностно-пористых имплантатов для травматологии, ортопедии, различных видов пластической хирургии.
Изобретение относится к медицинскому протезу, содержащему металлический материал, такой как титан или его сплав, в котором поверхностные части металлического материала покрыты слоем соответствующего гидроксидного материала, такого как гидроксид титана.

Изобретение относится к способу обработки поверхности имплантата, предназначенного для имплантации в костную ткань, включающему предоставление фтора и/или фторида, по меньшей мере, на части поверхности имплантата и обеспечение на поверхности имплантата микрошероховатости, имеющей среднеквадратическую шероховатость (Rq и/или Sq) = 250 нм, и/или включающей поры, имеющие диаметр пор 1 мкм и глубину пор 500 нм.

Изобретение относится к медицине, а именно к сердечно-сосудистой хирургии, и может быть использовано при пластике магистральных вен. .

Изобретение относится к медицине. .

Изобретение относится к медицине, а именно к гинекологии. .

Изобретение относится к медицине и может быть использовано для лечения алопеции. .

Изобретение относится к области медицины, в частности к способам получения новых пористых биомедицинских материалов на основе сплава титан-кобальт, которые могут быть использованы для изготовления костных имплантатов
Изобретение относится к области медицины, а именно к челюстно-лицевой хирургии, и может быть использовано для устранения костных дефектов
Наверх