Смесительное устройство и способ смешивания текучей среды

(57) Изобретение относится к статическим смесительным устройствам и может использоваться в промышленных и химических установках, в том числе в обжарочных мельницах. Смесительное устройство, расположенное в проточном канале, имеет множество смесительных дисков, которые создают завихрения на передних кромках в текучей среде, протекающей через проточный канал в основном направлении потока. Смесительные диски расположены рядами вдоль осей рядов, проходящих поперек основного направления потока. Ряды дисков расположены рядом друг с другом в общей секции проточного канала. Диски соседних рядов наклонены попеременно с положительным углом атаки и с отрицательным углом атаки относительно направления потока. Текучая среда, протекающая через проточный канал, тщательно перемешивается системой завихрений с передних кромок дисков, при этом создают, по меньшей мере, две системы противоположно вращающихся завихрений с передних кромок в общей секции проточного канала. Технический результат состоит в повышении эффективности перемешивания текучей среды. 2 н. и 29 з.п. ф-лы, 18 ил.

 

Изобретение относится к смесительному устройству, расположенному в проточном канале и имеющему несколько смесительных дисков, создающих завихрения на передних кромках в текучей среде, протекающей через проточный канал в основном направлении потока. Смесительные диски расположены в рядах смесительных дисков вдоль осей рядов, проходящих, по существу, поперек основного направления потока, и смесительные диски соответствующего ряда смесительных дисков наклонены одинаково относительно основного направления потока текучей среды.

Изобретение относится также к способу смешивания текучей среды, протекающей в основном направлении потока через проточный канал, при этом поток текучей среды тщательно перемешивается с помощью системы завихрений, возникающих на передних кромках.

Такие смесительные устройства и способы смешивания используются в промышленных установках, электростанциях, химических установках, обжарочных мельницах или аналогичных установках для перемешивания или смешивания возникающих потоков. Например, для очистки отработавших газов их необходимо перемешивать для обеспечения равномерного использования и эффективной работы очистительных устройств.

Разработанное заявителем смесительное устройство является так называемым статическим смесителем, в котором тонкие смесительные диски расположены так, что поток может свободно проходить между ними в проточном канале. Смесительные диски наклонены под острым углом, называемым также углом набегания потока, относительно потока. Затем на задней стороне этих смесительных дисков, направленной по потоку, возникает особенно устойчивая система завихрений, возникающих на передних кромках. Система завихрений с передних кромок состоит, по существу, из двух противоположно вращающихся завихрений с свободных передних и боковых кромок, где поток свободно проходит мимо них в направлении внутреннего пространства и конически расширяется в основном направлении потока. Эти пары завихрений в виде мешков называются в самолетостроении вихревым торможением; они являются очень мощными и создают хорошее смешивающее действие внутри короткой смесительной зоны по потоку за смесительными дисками, известными также как вызывающие завихрения диски или дефлекторы, с очень небольшим наклоном смесительного диска относительно основного направления потока. За счет особенно острого угла набегающего потока смесительного диска по сравнению с другими смесительными устройствами имеется лишь чрезвычайно небольшое увеличение сопротивления потоку. Поэтому падение давления в смесительном устройстве является особенно небольшим по сравнению с падением давления в других известных системах.

Так называемые поперечные смесители используются в проточных каналах указанных выше установок, где эти каналы часто являются очень широкими. Эти поперечные смесители выравнивают распределение температур, химический состав отходящих газов и распределение пыли, например, уносимой золы, на основе принципа действия статического смесителя. В этих поперечных смесителях множество вызывающих завихрения дисков расположено вдоль оси ряда смесительных дисков. Ось этого ряда смесительных дисков проходит, по существу, поперек основного направления потока.

Для дополнительного улучшения равномерности потока заявители данной заявки уже предлагали смесители, в которых множество рядов смесительных дисков этого типа расположены друг за другом в направлении потока. Второй ряд находится на минимальном расстоянии от первого ряда смесительных дисков, которое зависит от структуры завихрений, создаваемых первым рядом. Таким образом, второй ряд смесительных дисков располагается позади первого ряда так, что смесительные завихрения второго ряда смесительных дисков дополняют и усиливают завихрения первого ряда смесительных дисков.

Если необходимо добавлять дополнительные добавки (например, аммиак или аммиачную воду в установки денитрификации, так называемые установки deNOx, SO3 в случае электростатических фильтров, известь в угольных котлах и т.п.) в первую текучую среду, которая протекает через проточный канал и которая называется также первичной текучей средой, то по потоку за поперечным смесителем (смесителями) устанавливается примешивающее устройство. Это примешивающее устройство переносит подлежащий примешиванию материал, называемый в последующем вторичной текучей средой, непосредственно в систему завихрений, которая увлекает вещество и тщательно смешивает его с основным потоком. Подлежащее примешиванию вещество может быть газообразным, в виде тумана (аэрозоля) или испыленного твердого вещества. Известные подмешивающие устройства могут быть узкими впрыскивающими решетками, имеющими множество форсунок, с помощью которых добавки подмешиваются и тонко распределяются в первичной текучей среде. Эти решетки форсунок устанавливаются на минимальном расстоянии перед любыми смесителями. Минимальное расстояние выбирается достаточно большим, так что впрыскиваемая вторичная текучая среда возможно более полно испаряется в горячей первичной текучей среде перед достижением смесителя, поскольку в противном случае на смесителях возникают явления коррозии и эрозии.

Эти известные смесительные устройства уже длительное время успешно применяются. Тем не менее, на фоне все возрастающих требований к эффективности промышленных установок имеется потребность в смесительном оборудовании с повышенной эффективностью.

Поэтому целью данного изобретения является создание смесительного устройства, которое имеет дополнительно оптимированную эффективность.

Цель достигается с помощью смесителя типа, заданного во вступительной части, посредством расположения рядов смесительных дисков рядом друг с другом в общей секции проточного канала относительно основного направления потока, при этом смесительные диски соседних рядов смесительных дисков попеременно наклонены под положительным курсовым углом основного направления потока и под отрицательным курсовым углом, а в случае способа смешивания эта цель достигается тем, что в общей секции проточного канала создают по меньшей мере две системы завихрений с передних кромок, направленных в одинаковом направлении. Предпочтительные модификации описаны в зависимых пунктах формулы изобретения.

Таким образом, речь идет о смесительном устройстве, которое расположено в проточном канале и имеет множество смесительных дисков. Эти смесительные диски создают описанные выше завихрения с передних кромок в текучей среде, протекающей через проточный канал в основном направлении потока, и они расположены вдоль осей рядов смесительных дисков, за счет чего ряды смесительных дисков проходят, по существу, поперек основного направления потока. Смесительные диски соответствующего ряда смесительных дисков, в свою очередь, расположены в одинаковом направлении относительно основного направления потока текучей среды. Таким образом, они проходят, по существу, в одинаковом направлении, но они не обязательно должны быть выровнены параллельно друг другу, а могут иметь небольшие отклонения или различия в их курсовых углах.

Согласно данному изобретению эти ряды смесительных дисков расположены рядом друг с другом в общей секции проточного канала. Таким образом, ряды смесительных дисков не расположены друг за другом на минимальном расстоянии в основном направлении потока, как было принято в прошлом, а в противоположность всем обычным правилам расположения они все установлены в одной и той же секции проточного канала. Таким образом, ряды смесительных дисков проходят в основном по длине секции проточного канала, проходящей в основном направлении потока, при этом длина этой секции определяется максимальной продольной протяженностью самого большого ряда смесительных дисков. Другие соседние ряды смесительных дисков тогда проходят по той же длине или по меньшей длине и находятся, по существу, внутри секции проточного канала, определяемой наиболее длинным рядом смесительных дисков. Максимальную продольную протяженность в данном контексте следует понимать как длину от передней кромки передней части до задней кромки задней части смесительного устройства в основном направлении потока. Таким образом, передняя кромка обычно является передней кромкой самого переднего смесительного диска, а задняя кромка является обычно также задней кромкой последнего смесительного диска, называемой также кромкой отрыва или кромкой отделения.

Смесительные диски соседних рядов смесительных дисков наклонены, согласно данному изобретению, попеременно под положительным и отрицательным курсовым углом относительно основного направления потока. Система рядов смесительных дисков попеременно разделяет поток на составляющую потока, отклоняемую в положительном направлении по отношению к основному направлению потока, и на составляющую потока, отклоняемую в отрицательном направлении. Поэтому на виде сверху такое смесительное устройство образует схему пересекающихся друг с другом потоков. Кроме того, смесительные диски не только создают подобный завихрению поперечный поток за счет системы завихрений с передних кромок в задней части смесительных дисков, но также за счет одновременного отклонения потока на своих передних кромках эти смесительные диски создают вращающийся глобальный поток поперек основного направления потока. Весь поток текучей среды смещается по всей ширине поперечного сечения канала при вращении вокруг продольной оси канала. В результате образуется глобальное спиральное скручивание потока, которое обеспечивает особенно эффективное перемешивание текучей среды. Данное изобретение имеет то преимущество, что перемешиваются также горячие точки и неуравновешенные температуры.

Смешивание текучих сред на основе этого специального штабелирования и/или стратификации потока выполняется намного более эффективнее, чем в случае последовательных рядов поперечных смесителей, согласно уровню техники. Было установлено, что взаимно проникающие системы завихрений с передних кромок смесительного устройства согласно данному изобретению не создают препятствий друг другу. Кроме того, смесительное устройство согласно изобретению очень хорошо использует пространство, поскольку отдельные ряды смесительных дисков не расположены друг за другом на минимальном расстоянии для обеспечения специфичной эффективности отдельных рядов смесительных дисков. Эта компактная конструкция смесительного устройства, согласно изобретению, является другим преимуществом, поскольку доступное пространство часто является тесным, в частности в крупных установках, которые обычно занимают все доступное пространство.

В предпочтительной модификации смесительного устройства, согласно изобретению, ряды смесительных дисков расположены друг над другом. Таким образом, ряды смесительных дисков проходят, по существу, рядом друг с другом, но с поворотом на 90°; другими словами, оба ряда проходят в горизонтальном направлении. Возможно также, что оси соседних рядов смесительных дисков расположены в плоскостях, которые находятся на расстоянии друг от друга и проходят параллельно основному направлению потока. Оси рядов расположены так, что они не пересекаются, но проходят с перекрещиванием друг друга при рассмотрении сверху.

Оси соседних рядов смесительных дисков могут предпочтительно также быть наклонены попеременно в положительном и отрицательном направлении выравнивания относительно основного направления потока. Под углом выравнивания понимается угол между осью ряда и основным направлением потока. Основное направление потока определяется известным образом, по существу, из пути прохождения стенок канала по потоку перед, вокруг и за смесительным устройством. Обычно это линия центра тяжести поперечного сечения канала, которая проходит в продольном направлении.

Оси рядов расположены в разных плоскостях на расстоянии друг от друга, проходящих, по существу, параллельно основному направлению потока. Они целесообразно проходят через центр тяжести отдельных смесительных дисков. Однако в качестве альтернативного решения ось ряда может также соединять переднюю точку соответствующего ряда смесительных дисков в направлении потока или другие подходящие точки для равномерной ориентации множества различных смесительных дисков. Например, смесительные диски различной длины могут находиться на одной линии своими передними кромками, и тогда ось ряда будет проходить через соответствующие передние кромки.

Оси рядов предпочтительно расположены с наклоном в своих плоскостях с углом выравнивания от 75° до 90° и/или от - 75° до - 90° относительно основного направления потока. Таким образом, оси двух рядов могут иметь положительный или отрицательный угол выравнивания или могут иметь попеременно положительный угол и отрицательный угол.

В одной модификации данного изобретения оси рядов проходят параллельно друг другу. Это обеспечивает особенно равномерную схему потока, в частности по потоку за рядами смесительных дисков. Это относится также к случаю, когда ряды смесительных дисков расположены симметрично друг другу. Это может быть точечная симметрия или осевая симметрия относительно центра тяжести проточного канала или основного направления потока.

В предпочтительном варианте выполнения смесительного устройства, согласно данному изобретению, по меньшей мере один ряд смесительных дисков имеет изогнутую ось ряда. Это является предпочтительным в случае сложной геометрии проточного канала, когда поток текучей среды необходимо направлять в определенные зоны проточного канала, или же части потока необходимо смешивать в большей или меньшей степени. Изогнутая ось ряда может иметь, например, постоянный радиус кривизны в случае дугообразной секции. Может быть также целесообразной изменяющаяся кривизна, в частности, в параболическом повороте. В случае такой кривизны часть оси ряда смесительных дисков проходит почти параллельно основному направлению потока, но большая часть оси ряда смесительных дисков проходит поперек основного направления потока. Если соединить начальную и конечную точки такой оси ряда смесительных дисков, то соединительная линия проходит, согласно данному изобретению, по существу, поперек основного направления потока. Курсовые углы смесительных дисков предпочтительно выбираются большими при уменьшении кривизны оси ряда.

Ряды смесительных дисков предпочтительно имеют одинаковое количество смесительных дисков. Все смесительные диски одного ряда смесительных дисков предпочтительно имеют также одинаковую форму. Это обеспечивает предпочтительно массовое производство смесительных дисков. Это также упрощает ориентацию смесительных дисков на месте, поскольку одинаковые диски можно устанавливать одинаково и одинаково выравнивать.

В зависимости от геометрии канала может быть желательным, чтобы смесительные диски одного ряда смесительных дисков были расположены так, что они частично перекрывают друг друга относительно основного направления потока. При рассмотрении в основном направлении потока смесительные диски такого перекрывающегося ряда смесительных дисков перекрывают друг друга. Таким образом, в зоне перекрытия задний смесительный диск находится в тени потока смесительного диска, установленного перед ним. В случае особенно сложной геометрии канала перекрытие отдельных смесительных дисков может изменяться в одном ряду смесительных дисков. В этом случае желательно, чтобы перекрытие отдельных смесительных дисков увеличивалось с уменьшением кривизны или наклона оси ряда относительно основного направления потока.

Предпочтительно по меньшей мере один диск имеет треугольную форму. Понятие треугольная форма относится в данном случае к тонкому диску, имеющему треугольную площадь основания. Дополнительно к этому или в качестве альтернативного решения по меньшей мере один смесительный диск может иметь округленную форму, в частности круговую, эллиптическую или овальную форму. Для оптимального отделения потока желательно, чтобы по меньшей мере один округленный смесительный диск был плоским на своей стороне, противоположной основному направлению потока. Кроме того, смесительное устройство, согласно изобретению, имеет по меньшей мере один смесительный диск, имеющий трапециевидную форму. Тогда более узкой стороной является сторона смесительного диска, направленная против потока. В этом случае передняя кромка, создающая завихрения на передней кромке, является U-образной с расширяющимися плечами, в то время как в случае треугольного диска она является V-образной, а в случае круглого диска - секцией дуги.

Для дополнительной поддержки образования завихрений с передних кромок и уменьшения сопротивления потоку, желательно, чтобы по меньшей мере один смесительный диск имел по меньшей мере один сгиб на своих поверхностях набегания потока. Этот сгиб не должен быть слишком ярко выраженным, более предпочтительными являются относительно плоские поверхности набегания потока смесительного диска. В этом случае поверхность желательно выполнена со сгибом сзади в направлении потока. Таким образом, заостренная сторона сгиба направлена против потока. В этом же смысле несколько сгибов могут образовывать угол в поверхности в направлении потока.

В особенно предпочтительном варианте выполнения смесительного устройства, согласно изобретению, в той же секции потока проточного канала, в которой проходят ряды смесительных дисков, может быть расположено подмешивающее устройство, имеющее по меньшей мере одно выпускное отверстие для второй текучей среды. В отличие от уровня техники, используется комбинация нескольких поперечных смесителей с подмешивающими устройствами [sic] в одной и той же секции канала. Было установлено, что сопротивление потоку смесительного устройства, согласно изобретению, меньше суммы отдельных сопротивлений потоку соответствующих рядов смесительных дисков и подмешивающего устройства. Для дополнительного уменьшения сопротивления потоку подмешивающее устройство можно также использовать для установки смесительных дисков.

В предпочтительном варианте выполнения смесительного устройства с подмешивающим устройством по меньшей мере одна выпускная труба расположена между двумя смежными рядами смесительных дисков, при этом по меньшей мере одно выпускное отверстие находится в этой выпускной трубе. Вторичная текучая среда протекает через выпускную трубу и распыляется в первичной текучей среде через по меньшей мере одно выпускное отверстие. Выпускная труба подмешивающего устройства должна быть точно согласована с геометрией ряда смесительных дисков и должна предпочтительно проходить как можно более параллельно осям рядов в зоне передних кромок смесительных дисков. В частности, этот вариант выполнения имеет то преимущество, что вторичная текучая среда, подмешиваемая к первичной текучей среде, распределяется особенно тонко и равномерно ниже по потоку за счет завихрений с передних кромок отдельных смесительных дисков. Дополнительно к этому, с помощью такого расположения устраняются указанные выше проблемы коррозии и эрозии, в частности, когда текучая среда распыляется на подветренную сторону смесительных дисков.

Для дополнительной гомогенизации первичной текучей среды, обогащенной подмешанной вторичной текучей средой ,по меньшей мере одно выпускное отверстие подмешивающего устройства соответствует каждому смесительному диску. Это означает, что по меньшей мере одно выпускное отверстие подмешивающего устройства расположено в зоне каждого отдельного смесительного диска и, в частности, расположено как можно дальше впереди в зоне передней кромки. Это обеспечивает особенно тонкое распределение вторичной текучей среды в потоке первичной текучей среды.

В особенно предпочтительном варианте выполнения каждому смесительному диску соответствует своя собственная выпускная труба подмешивающего устройства. В этом случае каждый смесительный диск можно устанавливать в проточном канале особенно простым образом. Для этого смесительный диск соединяется винтами, точечной сваркой или любым другим подходящим способом с соответствующей выпускной трубой.

Таким образом, способ смешивания, согласно изобретению, характеризуется тем, что создают по меньшей мере две выровненные друг с другом системы завихрений с передних кромок в совместной секции проточного канала. Таким образом, системы завихрений с передних кромок, каждая из которых состоит из пары противоположно вращающихся внутрь завихрений с передних кромок, попеременно выравнивают относительно основного направления потока, т.е. с положительным углом в одном случае и с отрицательным углом в другом случае. Это имеет то преимущество, что обеспечивается эффективное и тщательное перемешивание текучей среды в особенно короткой смесительной зоне.

В предпочтительном варианте выполнения способа смешивания, согласно изобретению, глобальный поток, вращающийся в основном направлении потока, создают вместе с двумя системами противоположно вращающихся завихрений с передних кромок. Наложение глобального потока на системы завихрений с передних кромок обеспечивает дальнейшее увеличение эффективности смешивания потоков текучей среды. При создании систем противоположно вращающихся завихрений с передних кромок в первую текучую среду добавляют по меньшей мере одну вторичную текучую среду в таких применениях, как денитрификация отработавших газов, при которой необходимо распылять поток другой текучей среды в основном потоке. В противоположность уровню техники перемешивание текучей среды происходит одновременно с добавлением второй текучей среды. Как указывалось выше применительно к смесительному устройству, это приводит к дополнительному повышению эффективности способа смешивания, согласно изобретению.

Ниже приводится подробное описание изобретения на основе приведенных в качестве примера вариантов выполнения со ссылками на прилагаемые чертежи, на которых схематично изображено:

фиг.1 - проточный канал, в котором расположено смесительное устройство, согласно первому примеру выполнения, в изометрической проекции;

фиг.2 - проточный канал, показанный на фиг.1, на виде в направлении продольной оси канала;

фиг.3 - проточный канал, показанный на фиг.1, на виде сбоку;

фиг.4 - проточный канал, показанный на фиг.1, на виде сверху;

фиг.5 - проточный канал, в котором расположено смесительное устройство, согласно второму примеру выполнения, в изометрической проекции;

фиг.6 - проточный канал, показанный на фиг.5, на виде в направлении продольной оси канала со смесительным устройством, согласно второму примеру выполнения;

фиг.7 - проточный канал, показанный на фиг.5, на виде сбоку со смесительным устройством, согласно второму примеру выполнения;

фиг.8 - проточный канал, показанный на фиг.5, на виде сверху со смесительным устройством, согласно второму примеру выполнения;

фиг.9 - проточный канал, в котором расположено смесительное устройство, согласно третьему примеру выполнения, в изометрической проекции;

фиг.10 - смесительный диск, имеющий круговую площадь основания;

фиг.11 - смесительный диск, имеющий эллипсоидную площадь основания;

фиг.12 - смесительный диск, имеющий площадь основания в форме сегмента дуги;

фиг.13 - смесительный диск, имеющий трапециевидную площадь основания;

фиг.14 - смесительный диск, имеющий трапециевидную площадь основания и изгиб;

фиг.15 - разрез по линии А-А на фиг.14;

фиг.16 - смесительный диск, имеющий треугольную площадь основания и два изгиба;

фиг.17 - разрез по линии В-В на фиг.16; и

фиг.18 - смесительное устройство, согласно четвертому примеру выполнения.

Первый вариант выполнения смесительного устройства 1, согласно изобретению, показанный на фиг.1, фиг.2, фиг.3 и фиг.4, расположен в прямоугольном проточном канале 2 и имеет восемь смесительных дисков 3 с треугольной площадью основания. Через проточный канал 2 протекает текучая среда Р в основном направлении потока 4. В случае показанного здесь канала 2 основное направление потока проходит в направлении продольной оси канала в направлении X, а ширина канала проходит поперек в направлении оси У, в то время как высота канала проходит в направлении Z.

Смесительные диски 3 расположены под углом ± α относительно основного направления потока 4. Поэтому они создают завихрения 5 на передних кромках на своей подветренной стороне, противоположной потоку, при этом эти завихрения распространяются вниз по потоку в виде конуса с расширением поперек основного направления потока 4. Затем завихрения 5 на передних кромках образуют систему 14 завихрений с передних кромок позади каждого смесительного диска 3, включающую два противоположно вращающихся завихрения 5, вращающихся в направлении центра смесительного диска 3; они являются очень устойчивыми и сильными завихрениями.

Смесительные диски 3 расположены один над другим в рядах 8, 9 смесительных дисков вдоль двух осей 6, 7 рядов. Ряды 8, 9 смесительных дисков расположены также в общей секции 10 проточного канала, при этом два ряда 8, 9 смесительных дисков имеют одинаковую длину.

Как показано на виде сверху на фиг.4, в смесительном устройстве 1, согласно изобретению, смесительные диски 3 ряда 8 смесительных дисков, расположенного ниже ряда 9 смесительных дисков, расположены под положительным углом α относительно основного направления потока 4. Положительный угол α является положительным углом в математическом смысле, т.е. углом поворота против часовой стрелки. Смесительные диски 3 ряда 9 смесительных дисков, расположенного выше, расположены соответственно под отрицательным углом α относительно основного направления потока 4.

Оси 6, 7 смежных рядов 8, 9 смесительных дисков, в свою очередь, проходят параллельно друг другу и поперек основного направления потока 4. Поэтому на фиг.4 ось 6 нижнего ряда смесительных дисков закрыта осью 7 верхнего ряда 9 смесительных дисков. В данном примере выполнения угол β двух осей 6, 7 в каждом случае составляет точно 90°. Оси 6, 7 рядов находятся в двух плоскостях, проходящих в направлениях Х и У с разными координатами Z, параллельно основному направлению потока 4, при этом оси 6, 7 рядов проходят лишь в направлении У, т.е. имеют обе координаты X.

Смесительные диски 3 установлены каждый на установочной трубе 11 без возможности поворота, так что они перекрываются относительно основного направления потока 4. Как показано на фиг.2, смесительные диски 3 имеют все одинаковую форму и перекрываются на равное расстояние uy в направлении Y. Перекрытие uy в нижнем ряду 8 смесительных дисков точно равно перекрытию в ряду 9 смесительных дисков.

Перемешивание текучей среды 3, протекающей через проточный канал 2 в основном направлении потока 4, происходит так, что смесительные диски 4 отклоняют протекающую текучую среду от их вершины 25 в направлении широкой задней кромки 26 поперек основного направления потока 4 в направлении канала 13. Одновременно возникают системы 14 завихрений с передних кромок на подветренной стороне смесительных дисков 3, противоположной потоку. Эти системы 14 завихрений с передних кромок находятся позади каждого смесительного диска 3. Они не изображены позади каждого смесительного диска 3 на фиг.1-9 лишь по соображениям простоты изображения.

Как показано на фиг.2, системы 14 завихрений с передних кромок нижнего ряда 8 смесительных дисков распространяются в направлении левой стороны на чертеже, а системы завихрений верхнего ряда 9 смесительных дисков распространяются направо. На основе местной системы координат, показанной на фиг.2, нижние системы 14 завихрений с передних кромок проходят в отрицательном направлении У, в то время как верхние системы 14 завихрений с передних кромок ряда 9 смесительных дисков проходят в положительном направлении У. Таким образом, смесительные диски 3 отклоняют поток своими передними кромками, обращенными к потоку, и одновременно создают завихрения на своей стороне, противоположной потоку. Таким образом, они имеют отклоняющее действие и создают завихрения. За счет этого специального расположения рядов 8 и 9 смесительных дисков создается правонаправленная спираль вокруг продольной оси канала во всем потоке, называемом в данном случае вращающимся глобальным потоком 12. Этот глобальный поток 12 обеспечивает хорошее и тщательное перемешивание потока Р от одной стороны канала до другой стороны.

Второй пример выполнения смесительного устройства 1, согласно изобретению, показан на фиг.5, 6, 7 и 8. Он отличается от первого примера выполнения в основном выравниванием рядов 8, 9 смесительных дисков. Оси 6, 7 смесительных дисков в данном случае проходят попеременно с положительным углом β выравнивания или с отрицательным углом β выравнивания, что приводит к перекрестному расположению рядов 8, 9 смесительных дисков, как показано на виде сверху на фиг.8. Два ряда 8, 9 смесительных дисков расположены симметрично продольной оси канала, так что оси 6, 7 рядов пересекаются в середине канала. В данном случае угол β составляет около 80°.

Как показано на фиг.5, установочные трубы 11 смесительных дисков 3 образуют подмешивающее устройство 29 для вторичной текучей среды S. Это означает, что в данном варианте выполнения через установочные трубы 11 протекает вторичная текучая среда S. Таким образом, обращенные к каналу концы установочных труб 11 образуют выпускные отверстия 30 подмешивающего устройства 29. Одновременно установочные трубы 11 являются также выпускными трубами 31 подмешивающего устройства 29. Таким образом, это подмешивающее устройство 29 имеет точно столько выпускных труб и выпускных отверстий 30, сколько имеется смесительных дисков 3. Таким образом, установочные трубы 11 служат для установки отдельных смесительных дисков 3, а также для направления и подмешивания второй текучей среды S в поток первой текучей среды Р.

В третьем примере выполнения смесительного устройства 1, согласно изобретению, показанном на фиг.9, оси 6, 7 рядов имеют параболический изгиб. Ось 7 верхнего ряда имеет свою более изогнутую часть на левой стороне проточного канала 2, а ось 6 нижнего ряда имеет свою часть с большей кривизной на правой стороне проточного канала 2. Смесительные диски 3 расположены вдоль каждой оси 6, 7 ряда, так что углы атаки α увеличиваются от части, имеющей большую кривизну, к части осей 6, 7 ряда, имеющих меньшую кривизну.

В этом примере выполнения расстояние между отдельными смесительными дисками в каждом ряду 8, 9 смесительных дисков выбирается так, что перекрытие uy уменьшается с увеличение кривизны оси 6, 7 ряда. Так же, как и в предыдущих примерах выполнения, смесительные диски 3 в этом примере выполнения расположены вдоль осей 6, 7 рядов симметрично основному направлению потока 4, проходящему в направлении Х в средней точке канала. Оси 6, 7 рядов расположены друг над другом, так что они перекрещиваются в середине проточного канала 2, как показано на виде сверху на фиг.9.

Различные варианты выполнения смесительных дисков 3 показаны на фиг.10-17. Смесительный диск 3, показанный на фиг.10, является диском, имеющим круговую площадь основания. Показанный на фиг.11 диск имеет эллиптическую площадь основания. Показанный на фиг.12 диск также является округленным диском, хотя имеет плоскую заднюю кромку 17. Диск следует располагать в потоке так, чтобы округленная передняя кромка 18 была направлена против потока, а плоская задняя кромка 17 была направлена по потоку. Показанный на фиг.13 смесительный диск 3 имеет трапециевидную площадь основания, при этом более узкая передняя кромка 19 направлена против потока, а более широкая задняя кромка 20 направлена по потоку. Таким образом, текучая среда обтекает смесительный диск, показанный на фиг.13, слева направо аналогично смесительному диску 3, показанному на фиг.12.

Другой вариант выполнения трапециевидного смесительного диска 3 показан на фиг.14 и 15, где смесительный диск 3 имеет сгиб 21, проходящий в направлении потока в середине площади основания смесительного диска 3. Сгиб 21, как показано на фиг.15, проходит так, что сторона 22 смесительного диска 3, направленная против потока, слегка уменьшается в направлении задней части в направлении потока, в то время как верхняя сторона смесительного диска 3, направленная по потоку, является вогнутой. Эта форма усиливает завихрения на передних кромках и тем самым приводит к механической стабилизации смесительного диска 3.

Другой вариант выполнения смесительного диска 3 показан на фиг.16 и 17 и имеет треугольную площадь основания, как показано на виде сверху, но имеет также два сгиба 21 и 24, проходящих радиально от вершины 25 к задней кромке 26, так что ширина развернутых сторон 27 и 28 становится больше в направлении потока. На фиг.17 показан разрез по линии В-В на фиг.16, на котором показаны два угловых положения сторон 27 и 28. Смесительный диск 3, показанный на фиг.16 и 17, выравнивается точно так же, как и смесительный диск, показанный на фиг.14 и 15. Поверхность 22 смесительного диска 3, принимающая набегающий поток, находится под углом относительно потока на своих боковых кромках, в то время как середина является прямой. Верхняя сторона смесительного диска 3, направленная снова по потоку, является снова вогнутой.

Четвертый пример выполнения смесительного устройства, показанный на фиг.18, отличается от первого варианта выполнения, показанного на фиг.1, тем, что смесительные диски 3' имеют эллиптическую площадь основания, как показано на фиг.11. В остальном конструкция соответствует примеру выполнения, показанному на фиг.1.

1. Смесительное устройство (1), расположенное в проточном канале (2) и имеющее множество смесительных дисков (3), создающих завихрения (5) на передних кромках в текучей среде (Р), протекающей через проточный канал (2) в основном направлении потока (4), при этом смесительные диски (3) расположены в рядах (8, 9) вдоль осей (6, 7) рядов, проходящих, по существу, поперек основного направления потока (4), и смесительные диски (3) соответствующего ряда (8, 9) наклонены в одинаковом направлении относительно основного направления потока (4) текучей среды, отличающееся тем, что ряды (8, 9) смесительных дисков расположены рядом друг с другом в общей секции проточного канала относительно основного направления потока (4), при этом смесительные диски (3) соседних рядов (8, 9) наклонены попеременно с положительным углом атаки и с отрицательным углом (α) атаки относительно основного направления потока (4).

2. Смесительное устройство по п.1, отличающееся тем, что ряды (8, 9) смесительных дисков расположены друг над другом.

3. Смесительное устройство по п.1 или 2, отличающееся тем, что оси (6, 7) соседних рядов (8, 9) смесительных дисков попеременно наклонены с положительным и отрицательным углом (β) выравнивания относительно основного направления потока (4).

4. Смесительное устройство по п.1, отличающееся тем, что оси (6, 7) соседних рядов (8, 9) смесительных дисков расположены на расстоянии друг от друга.

5. Смесительное устройство по п.3, отличающееся тем, что оси (6, 7) рядов расположены на своих уровнях так, что они наклонены под углом (β) выравнивания от 75° до 90° и/или от - 75° до - 90° относительно основного направления потока (4).

6. Смесительное устройство по п.1, отличающееся тем, что оси (6, 7) соседних рядов (8, 9) смесительных дисков проходят параллельно друг другу.

7. Смесительное устройство по п.1, отличающееся тем, что ряды (8, 9) смесительных дисков расположены симметрично друг другу.

8. Смесительное устройство по п.1, отличающееся тем, что, по меньшей мере, один ряд (8, 9) смесительных дисков имеет изогнутую ось (6, 7) ряда.

9. Смесительное устройство по п.8, отличающееся тем, что, по меньшей мере, один ряд (8, 9) смесительных дисков имеет изогнутую ось (6, 7) ряда с переменной кривизной.

10. Смесительное устройство по одному из пп.8 или 9, отличающееся тем, что кривизна является параболической.

11. Смесительное устройство по п.9, отличающееся тем, что величина угла (α) атаки смесительных дисков (3) увеличивается при увеличении кривизны оси (6, 7) ряда.

12. Смесительное устройство по п.1, отличающееся тем, что ряды (8, 9) смесительных дисков имеют одинаковую кривизну.

13. Смесительное устройство по п.1, отличающееся тем, что ось (6) первого ряда имеет первую кривизну, и ось (7) второго ряда имеет вторую кривизну, при этом вторая кривизна соответствует зеркальному отражению первой кривизны.

14. Смесительное устройство по п.1, отличающееся тем, что ряды (8, 9) смесительных дисков имеют каждый одинаковое количество смесительных дисков (3).

15. Смесительное устройство по п.1, отличающееся тем, что все смесительные диски (3) ряда (8, 9) имеют одинаковую форму.

16. Смесительное устройство по п.1, отличающееся тем, что смесительные диски (3) ряда (8, 9) расположены с частичным перекрытием (uy) относительно основного направления потока (4).

17. Смесительное устройство по п.16, отличающееся тем, что перекрытие (uу) отдельных смесительных дисков (3) изменяется в ряду (8, 9).

18. Смесительное устройство по п.16, отличающееся тем, что перекрытие (uу) отдельных смесительных дисков (3) увеличивается с уменьшением кривизны или наклона оси (6, 7) ряда относительно основного направления потока (4).

19. Смесительное устройство по п.1, отличающееся тем, что, по меньшей мере, один смесительный диск (3) имеет треугольную форму.

20. Смесительное устройство по п.1, отличающееся тем, что, по меньшей мере, один смесительный диск (3) имеет округленную форму, в частности круговую, эллиптическую или овальную форму.

21. Смесительное устройство по п.20, отличающееся тем, что, по меньшей мере, один округленный смесительный диск (3) имеет плоскую заднюю кромку на своей стороне (17), противоположной основному направлению потока (4).

22. Смесительное устройство по п.1, отличающееся тем, что, по меньшей мере, один смесительный диск (3) имеет трапециевидную форму.

23. Смесительное устройство по п.1, отличающееся тем, что, по меньшей мере, один смесительный диск (3) имеет, по меньшей мере, один сгиб (21, 24) на своей поверхности (22), обращенной к набегающему потоку.

24. Смесительное устройство по п.1, отличающееся тем, что в том же поперечном сечении (10) потока проточного канала (2), в котором проходят ряды (8, 9) смесительных дисков, расположено подмешивающее устройство (29), имеющее, по меньшей мере, одно выпускное отверстие (30) для вторичной текучей среды (S).

25. Смесительное устройство по п.24, отличающееся тем, что смесительные диски (3) установлены на подмешивающем устройстве (29).

26. Смесительное устройство по п.24, отличающееся тем, что между двумя соседними рядами (8, 9) смесительных дисков расположена, по меньшей мере, одна выпускная труба (31), в которой предусмотрено, по меньшей мере, одно выпускное отверстие (30) для вторичной текучей среды (S).

27. Смесительное устройство по п.24, отличающееся тем, что, по меньшей мере, одна выпускная труба (31), в которой имеется, по меньшей мере, одно выпускное отверстие (30) для вторичной текучей среды (S), расположена параллельно каждому ряду (8, 9) смесительных дисков.

28. Смесительное устройство по п.24, отличающееся тем, что каждому смесительному диску (3) соответствует, по меньшей мере, одно выпускное отверстие (30) подмешивающего устройства (29).

29. Смесительное устройство по п.24, отличающееся тем, что каждому смесительному диску (3) соответствует своя собственная выпускная труба (31) подмешивающего устройства (29).

30. Способ смешивания текучей среды (Р), протекающей в основном направлении потока (4) через проточный канал (2), в котором поток текучей среды (Р) тщательно перемешивается системой (14) завихрений с передних кромок дисков, при этом создают две противоположно направленных системы (14) завихрений с передних кромок дисков в общей секции (10) проточного канала, отличающийся тем, что в секции (10) проточного канала вместе с двумя системами движущихся в противоположных направлениях завихрений (14) с передних кромок дисков создают общий поток (12), вращающийся поперек основного направлении потока (4).

31. Способ смешивания по п.30, отличающийся тем, что при создании систем движущихся в противоположных направлениях (14) завихрений с передних кромок дисков в текучую среду (Р) добавляют, по меньшей мере, одну дополнительную вторичную текучую среду (S).



 

Похожие патенты:

Изобретение относится к способу и устройству для гидратирования геля, предназначенного для обработки буровой скважины, и может использоваться в нефтяной промышленности.

Изобретение относится к устройствам для перемешивания и может быть использовано для получения растворов и суспензий в химической промышленности и других отраслях народного хозяйства.

Изобретение относится к сбору и транспорту газожидкостных смесей и может быть использовано при совместном сборе и транспорте продукции нефтяных газоконденсатных месторождений.

Изобретение относится к способам и устройствам для перемешивания текучих жидких сред таких, например, как спиртосодержащие смеси, топливные или масляные смеси, краски, фруктовые напитки и т.д., и может быть использовано в химической, нефтехимической, пищевой, фармацевтической и других отраслях промышленности.

Изобретение относится к смесителям-диспергаторам для обработки смеси двух или более компонентов и может использоваться для смешения и диспергирования жидких и газожидкостных сред.

Изобретение относится к устройствам для приготовления высокодисперсных жидкостных и газожидкостных сред (эмульсий, суспензий), а также для интенсификации химических реакций в жидких и газовых средах и получения тепла.

Изобретение относится к гомогенизирующей, диспергирующей технике и может быть использовано в химической, нефтеперерабатывающей, топливо-энергетической промышленности, в частности для приготовления к сжиганию в котлоагрегатах или для хранения различных топливных смесей (получения эмульсий топливных смесей, в том числе мазута, содержащего воду).

Изобретение относится к технике и технологии сбора и транспорта газожидкостных смесей и может быть преимущественно использовано при совместном сборе и транспорте продукции нефтяных газоконденсатных месторождений, а также для подготовки водогазовой смеси для закачки.

Изобретение относится к трехмерному перекрестному дивертеру, используемому в качестве внутренней детали для трубы, барабана или башни. .

Изобретение относится к редукционному соплу для генерирования микропузырьков во флотационной камере и может использоваться для обработки воды. .

Изобретение относится к диспергированию эмульсий и суспензий и может использоваться при водоподготовке во флотационных установках для аэрации грунтовых вод, в химической технологии, строительстве, для интенсификации растворения химических реагентов

Изобретение относится к области кавитационной обработки твердых веществ и жидкостей и может быть использовано при производстве суспензий и эмульсий

Изобретение относится к устройствам для смешивания и физико-химического реагирования разнородных по вязкости жидкостей или суспензий

Изобретение относится к смешиванию жидких и порошкообразных веществ, обладающих текучестью, и может использоваться в химической, лакокрасочной, пищевой промышленности

Изобретение относится к пищевой промышленности, а именно к технологии и устройствам для обработки спиртосодержащих жидкостей

Изобретение относится к смешению двух и более текучих сред, в том числе газов, жидкостей и сыпучих продуктов, и может использоваться в теплоэнергетике, нефтеперерабатывающей, химической и других отраслях промышленности

Изобретение относится к устройствам планетарного типа, используемым для производства эмульсий, масел, смазок и антикоррозионных покрытий

Изобретение относится к оборудованию, используемому в нефтяной промышленности, и предназначено для автоматизированного приготовления растворов из жидких и сыпучих химпродуктов при использовании физико-химических методов воздействия на нефтяные пласты

Изобретение относится к нефтяной, нефтеперерабатывающей и нефтехимической промышленности и может быть использовано при реализации технологических процессов, связанных со смешиванием различных ньютоновских и неньютоновских жидкостей и сред

Изобретение относится к технике диспергирования газожидкостной смеси и может использоваться в различных областях техники
Наверх