Устройство для измерения температуры

Изобретение относится к области приборостроения, а именно к датчикам температуры. Устройство для измерения температуры включает линию задержки на поверхностных акустических волнах, выполненную на пьезоэлектрическом звукопроводе, с входным и выходным встречно-штыревыми преобразователями, в устройство для измерения температуры дополнительно введен прибор для измерения коротких интервалов времени, выход которого соединен с входным встречно-штыревым преобразователем линии задержки на поверхностных акустических волнах, вход соединен с выходным встречно-штыревым преобразователем линии задержки на поверхностных акустических волнах, причем входной и выходной встречно-штыревые преобразователи линии задержки расположены в параллельных акустических потоках, их центры размещены на одной линии симметрии, по обе стороны от встречно-штыревых преобразователей расположены многополосковые отражательные решетки, при этом расстояния между центрами многополосковых отражательных решеток и центрами встречно-штыревых преобразователей одинаковы. Технический результат - повышение точности измерения за счет снижения вносимых потерь и выбора конструктивных параметров линии задержки. 2 ил.

 

Изобретение относится к области приборостроения, а именно к датчикам температуры.

Известно устройство на поверхностных акустических волнах (ПАВ) с малыми потерями, состоящее из пьезоэлектрического звукопровода, двух двунаправленных встречно-штыревых преобразователей, размещенных в параллельных акустических каналах, и двух многополосковых отражательных решеток, размещенных симметрично по обе стороны от встречно-штыревых преобразователей [1]. Данное устройство имеет малые вносимые потери, поскольку в нем используется кольцевая конструкция.

Недостатком данной конструкции является минимальное (менее 1 мкс) время задержки, ограничивающее возможность ее использования для применения в датчиках температуры.

Наиболее близким техническим решением является устройство для измерения температуры [2], содержащее линию задержки на ПАВ и усилитель.

Недостатком данного устройства являются большие вносимые потери (для компенсации которых и используется усилитель, который должен размещаться непосредственно рядом с линией задержки на ПАВ) и низкая точность измерения из-за влияния режимной нестабильности и нагрева схемы усилителя на активный элемент датчика (линию задержки на ПАВ).

Задачей изобретения является повышение точности измерения за счет снижения вносимых потерь и выбора конструктивных параметров линии задержки.

Поставленная задача достигается тем, что в устройство для измерения температуры с точностью ΔТ, включающее линию задержки на поверхностных акустических волнах, выполненную на звукопроводе из пьезоэлектрического материала, имеющего коэффициент температурной зависимости задержки ТКЗ и скорость поверхностной акустической волны υпав, с входным и выходным встречно-штыревыми преобразователями, дополнительно введен прибор для измерения коротких интервалов времени с точностью измерения Δt, выход которого соединен с входным встречно-штыревым преобразователем линии задержки на поверхностных акустических волнах, вход соединен с выходным встречно-штыревым преобразователем линии задержки на поверхностных акустических волнах, причем входной и выходной встречно-штыревые преобразователи расположены в параллельных акустических потоках, их центры размещены на одной линии симметрии, по обе стороны от встречно-штыревых преобразователей выполнены многополосковые отражательные решетки, при этом расстояния L между центрами многополосковых отражательных решеток и центрами встречно-штыревых преобразователей выбираются из условия:

,

где L - расстояние между центрами многополосковых отражательных решеток и центрами встречно-штыревых преобразователей;

Δt - точность измерения интервалов времени;

υпав - скорость поверхностной акустической волны в пьезоэлектрическом звукопроводе;

ТКЗ - температурный коэффициент задержки в пьезоэлектрическом звукопроводе;

ΔT - точность измерения температуры в устройстве.

На фиг.1 приведена конструкция предложенного устройства для измерения температуры, содержащая линию задержки на поверхностных акустических волнах 1, выполненную на пьезоэлектрическом звукопроводе 2, с входным 3 и выходным 4 встречно-штыревыми преобразователями, прибор для измерения коротких интервалов времени 5, выход которого соединен с входным встречно-штыревым преобразователем 3 линии задержки на поверхностных акустических волнах 1, а вход соединен с выходным встречно-штыревым преобразователем 4 линии задержки на поверхностных акустических волнах 1. При этом входной 3 и выходной 4 встречно-штыревые преобразователи линии задержки 1 расположены в параллельных акустических потоках, их центры размещены на одной линии симметрии, по обе стороны от встречно-штыревых преобразователей расположены многополосковые отражательные решетки 6.

Устройство работает следующим образом. С выхода устройства для измерения коротких интервалов времени 5 электрический сигнал поступает на входной встречно-штыревой преобразователь 3 линии задержки на поверхностных акустических волнах 1. Во входном встречно-штыревом преобразователе 3 электрический сигнал преобразуется в поверхностную акустическую волну, которая распространяется в перпендикулярных оси симметрии преобразователя направлениях в стороны многополосковых отражательных решеток 6. Многополосковые отражательные решетки 6 переотражают поверхностную акустическую волну в направлении выходного встречно-штыревого преобразователя 4 линии задержки на поверхностных акустических волнах 1. В выходном встречно-штыревом преобразователе 4 линии задержки на поверхностных акустических волнах 1 поверхностная акустическая волна, приходящая от обеих многополосковых отражательных решеток 6, складывается и преобразуется в электрический сигнал, который поступает на вход устройства для измерения коротких интервалов времени 5.

Из фиг.1 наглядно видно, что поверхностная акустическая волна в линии задержки проходит расстояние, равное удвоенному расстоянию между центрами многополосковых отражательных решеток и центрами встречно-штыревых преобразователей (2L). Относительное изменение времени задержки поверхностной акустической волны от температуры в соответствии с [3] определяется, как:

где Δτ - изменение времени задержки поверхностной акустической волны в линии задержки от изменения температуры;

τ - время задержки поверхностной акустической волны в линии задержки;

ТКЗ - температурный коэффициент задержки в пьезоэлектрическом звукопроводе линии задержки;

δT - диапазон изменения температуры.

Из выражения (1) время задержки поверхностной акустической волны в линии задержки определяется как:

С другой стороны, время задержки поверхностной акустической волны в линии задержки определяется соотношением [3]:

где L - расстояние между центрами многополосковых отражательных решеток и центрами встречно-штыревых преобразователей;

υпав - скорость поверхностной акустической волны в пьезоэлектрическом звукопроводе линии задержки.

Приравняем соотношения (2) и (3) и определим из них расстояние между центрами многополосковых отражательных решеток и центрами встречно-штыревых преобразователей линии задержки:

Заменив в выражении (4) Δτ (изменение времени задержки поверхностной акустической волны в линии задержки от изменения температуры) на точность прибора для измерения интервалов времени Δt, а δТ (диапазон изменения температуры) на точность измерения температуры в устройстве ΔT, получим выражение, описывающее оптимальное расстояние между центрами многополосковых отражательных решеток и центрами встречно-штыревых преобразователей линии задержки для требуемой точности измерения температуры при известной точности прибора для измерения интервалов времени:

Линия задержки сохраняет кольцевую структуру, что обеспечивает малые вносимые потери, необходимые для устойчивой работы прибора для измерения интервалов времени без дополнительных усилителей. Точность измерения температуры в устройстве при известной точности прибора для измерения интервалов времени обеспечивается выбором материала звукопровода линии задержки (определяет υпав и ТКЗ) и расчетом оптимального расстояния между центрами многополосковых отражательных решеток и центрами встречно-штыревых преобразователей по формуле (5).

Предлагаемое решение прошло техническую проверку. Линия задержки на поверхностных акустических волнах на частоту 434 МГц была изготовлена на звукопроводе из ниобата лития среза УХ/128° (υпав=3890 м/сек, ТКЗ=75·10-6 1/°С). Общие размеры звукопровода составили 6×1,8×0,5 мм при расстоянии между центрами многополосковых отражательных решеток и центрами встречно-штыревых преобразователей L=2,43 мм. Амплитудно-частотная характеристика и частотная характеристика времени задержки этого устройства, снятые в нормальных климатических условиях, показаны на фиг.2. Величина вносимых потерь в линии задержки составила 3,6 дБ при общем времени задержки сигнала в полосе пропускания порядка 1 мкс.

Для измерения интервалов времени, пропорциональных изменению температуры, использовался прибор для измерения времени и частоты T-2300R, представляющий собой PCI слот для персонального компьютера [4]. После соответствующей калибровки и обработки компьютерной программой результаты измерений времени задержки представлялись в виде изменения температуры. При использовании опции стандартной точности измерения времени прибора T-2300R 200 пс точность измерения температуры составила 2°С. При переходе на опцию повышенной точности измерения времени прибора T-2300R 1 пс точность измерения температуры составила порядка 0,01°С, чем полностью подтверждается правильность предлагаемого технического решения.

Источники информации

1. Экспериментальное исследование кольцевых фильтров на ПАВ с малыми потерями без элементов согласования. С.А.Доберштейн, Е.Б.Коржинский, В.А.Малюхов. Материалы конференции «Акустоэлектронные устройства обработки информации», М., 1988 г., с.99-100.

2. Акустоэлектронные радиокомпоненты. В.И.Речицкий. М.: Радио и связь, 1987 г.

3. Принципы построения датчиков физических величин на поверхностных акустических волнах. В.К.Киселев, И.А.Князев, С.М.Никулин, Г.В.Труфанова. Датчики и системы, №10, 2003 г., с.8-13.

4. Time/Frequency Counter T-2300R. VIGO System S.A.Swietlikow 3, 01-389 Warsaw, Poland. Internet: www.vigo.com.p1.

Устройство для измерения температуры, включающее линию задержки на поверхностных акустических волнах, выполненную на пьезоэлектрическом звукопроводе, с входным и выходным встречно-штыревыми преобразователями, отличающееся тем, что в устройство для измерения температуры дополнительно введен прибор для измерения коротких интервалов времени, выход которого соединен с входным встречно-штыревым преобразователем линии задержки на поверхностных акустических волнах, вход соединен с выходным встречно-штыревым преобразователем линии задержки на поверхностных акустических волнах, причем входной и выходной встречно-штыревые преобразователи линии задержки расположены в параллельных акустических потоках, их центры размещены на одной линии симметрии, по обе стороны от встречно-штыревых преобразователей расположены многополосковые отражательные решетки, при этом расстояния между центрами многополосковых отражательных решеток и центрами встречно-штыревых преобразователей одинаковы и выбираются из условия
,
где L - расстояние между центрами многополосковых отражательных решеток и центрами встречно-штыревых преобразователей;
Δt - точность измерения интервалов времени;
υпав - скорость поверхностной акустический волны в пьезоэлектрическом звукопроводе;
ТКЗ - температурный коэффициент задержки в пьезоэлектрическим звукопроводе;
ΔT - точность измерения температуры в устройстве.



 

Похожие патенты:

Изобретение относится к измерительной технике и может быть использовано в термостатах для контроля постоянства температуры жидкой среды. .

Изобретение относится к термометрии, может быть использовано для измерения как стационарных, так и нестационарных температурных полей сложного пространственного профиля и позволяет повысить точность измерений и снизить трудоемкость процессов измерения за счет исключения влияния нестабильности параметров импульсного источника излучения.

Изобретение относится к термометрии , а именно к средствам измерения температуры газовых сред по скорости распространения звука в газе. .

Изобретение относится к термометрии и позволяет расширить функциональные возможности за счет обеспечения измерения пространственного распределения неоднородных температурных полей сложного профиля и нестационарных температурных полей, повысить чувствительность, снизить трудоемкость процесса измерения.

Изобретение относится к контактной термометрии и может быть использовано для измерений температуры в широком диапазоне. .

Изобретение относится к области контактной термометрии и может быть использовано во всех областях народного хозяйства, требующих измерения высоких температур. .

Изобретение относится к контактной термометрии. .

Изобретение относится к области термометрии и может быть использовано для измерения температуры. Чувствительный элемент для измерения температуры состоит из пьезоплаты 1, на поверхности которой сформированы не менее одного встречно-штыревого преобразователя 3 и не менее четырех отражающих структур. Не менее двух отражающих структур 4 расположены под отличным от нуля углом к штырям встречно-штыревого преобразователя 3 и не менее одной отражающей структуры находится вне площади, ограниченной апертурой встречно-штыревого преобразователя и расстоянием между наиболее удаленными отражающими структурами 2, расположенными на одной оси, пересекающей штыри встречно-штыревого преобразователя 3 под прямым углом. Технический результат: повышение точности измерения температуры за счет использования свойств двух направлений распространения поверхностной акустической волны. 1 ил.

Изобретение относится к области измерительной техники и может быть использовано для дистанционного контроля температуры. Заявлен датчик температуры на поверхностных акустических волнах, содержащий герметичный корпус, в котором находится пьезоэлектрический звукопровод с большим температурным коэффициентом задержки (ТКЗ) порядка 10-4 1/градус. На рабочей поверхности расположены встречно-штыревые преобразователи (ВШП) с одинаковой центральной частотой f0, один из которых нагружен на приемо-передающую антенну, а другой ВШП является отражательным. Введен еще один пьезоэлектрический звукопровод с малым ТКЗ, в 50-100 раз меньшим по сравнению с ТКЗ порядка 10-4 1/градус, на котором расположены также два ВШП с той же центральной частотой f0, один из которых соединен электрически с приемо-передающей антенной параллельно с ВШП, расположенным на звукопроводе с большим ТКЗ, а другой ВШП - отражательный. Расстояние между центрами этих ВШП подбираются таким образом, чтобы задержка отраженного сигнала на пьезоэлектрическом звукопроводе с малым ТКЗ и на звукопроводе с большим ТКЗ при комнатной температуре были бы одинаковыми, либо отличались на величину 1/(4f0), а соответствующие ВШП, расположенные на разных пьезоэлектрических звукопроводах, должны иметь одинаковую полосу пропускания. Технический результат - повышение точности измерения температуры. 1 з.п. ф-лы, 1 ил.

Изобретение относится к области измерительной техники и касается фотоприемника для регистрации инфракрасного излучения в области 10,6 мкм. Фотоприемник включает в себя герметичную наполненную газом камеру, оснащенную входным окном, прозрачным для измеряемого излучения, и блок электроники. Внутри камеры, представляющей собой полый параллелепипед, на месте двух ее противоположных граней, вдоль которых распространяется измеряемое излучение, установлены соединенные с блоком электроники идентичные электроакустические преобразователи. Камера заполнена газовой смесью азот-элегаз общим давлением 1 атм и с относительной концентрацией элегаза , где - расстояние между входным окном и противоположной гранью камеры. Технический результат заключается в повышении чувствительности устройства. 1 ил.

Изобретение относится к области измерительной техники и касается способа измерения энергии излучения инфракрасного и терагерцового диапазонов. Способ включает в себя введение излучения в герметичную камеру, заполненную газом, и измерение величины нагрева газа, обусловленного поглощением излучения внутри камеры, посредством измерения скоростей прохождения акустических импульсов сквозь газ, на основании которой определяют искомую величину энергии излучения. Поглощение излучения осуществляется поглощающей пленкой, установленной внутри камеры, а в качестве газа для наполнения камеры используется ксенон. Технический результат заключается в повышении точности измерений. 1 ил.
Наверх