Способ получения ультрафильтрационной термостойкой полимерной мембраны

Изобретение относится к технологии получения ультрафильтрационных (УФ) термостойких полимерных мембран, в частности мембран на основе композиций поли-(4,4'-оксидифенилен)пиромеллитимида с циклизованным полиакрилонитрилом. В способе получения мембраны в раствор поли-(4,4'-оксидифенилен)пиромеллитамидокислоты в амидном растворителе вносят рассчитанное количество сухого модифицированного полиакрилонитрила. Затем добавляют глицерин в качестве порообразователя. Модифицированный полиакрилонитрил готовят частичной химической циклизацией линейного полиакрилонитрила. Полученный формовочный раствор перемешивают и дегазируют. С помощью фильеры с регулируемым зазором слой формовочного раствора наносят на стеклянную пластину. Погружают пластину в водно-спиртовую осадительную ванну. Сформованную мембрану переводят в раствор высококипящего технического масла в органическом растворителе, высушивают и прогревают до 250-300°C для достижения полной имидизации полиамидокислоты. Изобретение обеспечивает технологически простое получение УФ полимерных мембран, которые характеризуются коэффициентом проницаемости по воде Q=(5-300)·10-6 м/сек атм, номинальной молекулярной массой задержания ML=(10-350)·103 г/моль, термостойкостью не ниже 400°C, отсутствием растворимости и набухания во всех обычных органических растворителях, включая амидные, химической стойкостью в водных кислых средах, высокой температурой долговременной эксплуатации мембран, которая составляет 200-300°C. 2 з.п. ф-лы, 2 ил., 2 табл.

 

Изобретение относится к области химии высокомолекулярных соединений, конкретно к ультрафильтрационным термостойким полимерным мембранам на основе композиций поли-(4,4'-оксидифенилен)пиромеллитимида с модифицированным полиакрилонитрилом. Полимерные ультрафильтрационные мембраны, среди которых встречаются термостойкие, известны и нашли широкое применение при очистке вакцин, крови, в пищевой промышленности при производстве соков, молочных продуктов, при очистке сточных вод и т.д. Асимметричные полимерные мембраны получают методом инверсии фаз, когда гомогенный раствор полимера превращается в анизотропную трехмерную сетчатую структуру из твердого полимерного каркаса с пустотами внутри.

Наиболее перспективным материалом для получения термо-, тепло- и химически стойких мембран являются ароматические полиимиды. Ароматические полиимиды выделяются среди известных в настоящее время полимеров высоким уровнем свойств, необходимых для целевых мембран: выдерживают длительную эксплуатацию при температурах 250-300°C и стойки к агрессивным средам. Наиболее термостойкие ароматические полиимиды являются жесткоцепными, они неплавки и нерастворимы, что затрудняет их переработку в изделия. Наиболее изученным, недорогим и коммерчески доступным нерастворимым неплавким полиимидом является поли(4,4-оксидифенилен)пиромеллитимид (ПИ ПМ, Россия или Kapton, США).

Известны единичные изобретения, связанные с попыткой получить методом фазовой инверсии асимметричные фильтрационные (ультрафильтрационные, микрофильтрационные) мембраны из ПИ ПМ: патент EP №0753336 (опубл. 15.01.1997), патент США №6716270, (опубл. 06.04.2004).

Из-за нерастворимости этого полиимида формование асимметричных мембран возможно только из его растворимого форполимера - поли-(4,4'-оксидифенилен)пиромеллитамидокислоты (ПАК ПМ). После чего необходимо провести твердофазное превращение ПАК в ПИ мембрану, так называемую имидизацию ПАК. Для ее осуществления необходимы жесткие условия, как правило, - это повышенная температура до 400°C, которая достигается при ступенчатом режиме прогрева. Однако использование высоких температур в случае мембран способно привести к существенному изменению их поровой структуры, сформованной на стадии ПАК.

Поэтому основным недостатком этих способов является коллапс пор, который происходит на стадии термообработки (имидизации) мембраны, в результате чего поверхностный слой становится слишком плотным и непроницаемым для решения задач ультрафильтрации.

Полиакрилотнитрил и его сополимеры часто используют как материал для получения фильтрационных мембран. Так называемый стабилизированный, или циклизованный, ПАН - полимер, полученный циклизацией линейного ПАН путем термообработки при 200-270°С, отличает высокая термическая и химическая стабильность. Он стоек к действию большинства органических растворителей, набухает и растворяется лишь в амидных растворителях. Для получения мембран из ПАН, как правило, используют его композиции с другими полимерами, придающими ПАН пленкообразующие свойства. В работе [Спирина Т.Н. Термохимические реакции ароматических полиамидокислот с полиакрилонитрилом, диссертация на соискание ученой степени кандидата химических наук, 1992, 98 с.] было показано, что гомогенные пленки композиций ароматических ПИ и циклизованного ПАН, полученные термообработкой пленочных композиций ароматических полиамидокислот и модифицированного полиакрилонитрила, обладают более высокой термической и химической стабильностью, чем соответствующие полиимидные пленки.

Наиболее близким является способ получения асимметричной полимерной первапорационной мембраны [RU 2126291, 20.02.1999], включающий приготовление формовочного раствора полимера в амидном растворителе, нанесение его на гладкую инертную подложку и прогрев при температуре до 70°C в течение 15-40 минут; затем прогретый раствор на подложке погружают в осадительную ванну, отделившуюся мембрану промывают водой, сушат при комнатной температуре и прогревают при 150-200°C (0,5-2 часа).

Существенным недостатком этого способа является ограниченная возможность его применения - для получения мембран только из растворимых полимеров: полиамидоимидов. Полиамидоимиды и мембраны из них обладают термической стойкостью не выше 250°C и разрушаются в амидных средах и в хлорированных углеводородах, что не исчерпывает потенциальную термическую и химическую стойкость этого класса полимерных материалов. Осуществление этого способа не позволяет получить асимметричные мембраны с пористым скин-слоем, что делает невозможным их использование в процессах фильтрации. Способ получения этих мембран включает два цикла прогрева, что обусловливает повышенную энергоемкость процесса получения мембран в способе-прототипе. При этом первый цикл прогрева требует специального оснащения для улавливания опасных для здоровья человека паров выделяющегося (возгоняемого) растворителя и его утилизации.

Технической задачей и технологическим результатом предлагаемого способа получения ультрафильтрационной высокотермостойкой и химически стойкой полимерной мембраны является разработка двухстадийного метода, включающего на первой стадии мокрое формование в водно-спиртовую осадительную ванну мембраны из формовочного раствора, содержащего смесь растворимых форполимеров, и их конверсию путем термообработки в нерастворимую форму на второй стадии. Такой двухстадийный способ обеспечивает создание целевой пористой структуры мембран из смеси нерастворимых полимеров: поли-(4,4'-оксидифенилен)пиромеллитимида и циклизованного полиакрилонитрила, отличающихся максимальной термической и химической стойкостью среди известных к настоящему времени полимеров. Полученные по предлагаемому способу мембраны обладают термостойкостью не ниже 400°C и могут быть использованы в средах всех известных органических растворителей, включая амидные растворители и хлорированные углеводороды. Положительным технологическим результатом является также исключение используемого в прототипе первого цикла прогрева нанесенного на инертную подложку слоя формовочного раствора. Это, во-первых, улучшает экологические показатели процесса, т.к. подобный прогрев сопровождается выделением в атмосферу вредных химических реагентов. Во- вторых, снижает энергозатраты процесса, а также упрощает его технологическую оснастку.

Это достигается разработкой способа получения ультрафильтрационной термостойкой полимерной мембраны, который включает приготовление формовочного раствора полимера в амидном растворителе, нанесение его на стеклянную пластину и погружение в осадительную водно-спиртовую ванну с последующим высушиванием и прогревом, при этом в формовочный раствор поли-(4,4'-оксидифенилен)пиромеллитамидокислоты вводят 10-30 мас.% частично циклизованного полиакрилонитрила, в котором нитрил- и карбонилсодержащие звенья чередуются с последовательностями от трех до шести иминных циклов, добавляют 10-30 мас.% глицерина в качестве порообразователя, после формования в водной осадительной ванне, содержащей 20-60 мас.% этилового спирта, мембрану переводят в 20-60% раствор высококипящего полиметилсилоксанового масла в органическом растворителе, а прогрев мембраны осуществляют до 250-300°C до полной имидизации полиамидокислоты и циклизации полиакрилонитрила.

Способ характеризуется тем, что используют амидный растворитель из ряда: N,N'-диметилформамид, N,N'-диметилацетамид, N-метил-2-пирролидон.

Способ характеризуется также тем, что в качестве органического растворителя масла используют растворитель из ряда: гексан, гептан, петролейный эфир.

В результате полученная ультрафильтрационная термостойкая полимерная мембрана состоит из композиции поли-(4,4'-оксидифенилен) пиромеллитимида ≥70 мас.%, и циклизованного полиакрилонитрила ≤30 мас.% и представляет собой пористую пленку анизотропной структуры, включающую селективный поверхностный слой толщиной 0,1-10 мкм с порами размером 50-800 Å, расположенный на микропористой подложке той же полимерной композиции толщиной 50-250 мкм, имеющей пальцеобразную морфологию. Мембрана характеризуется коэффициентом проницаемости по воде Q=(5-300)·10-4 см/сек атм, номинальной молекулярной массой задержания ML=(10-350)·103 г/моль.

Способ поясняется примерами его осуществления.

Пример 1. Приготавливают формовочный раствор в ДМФ, содержащий 12% полиамидокислоты (1,64 г) на основе диангидрида пиромеллитовой кислоты и 4,4'-диаминодифенилового эфира, 20 мас.% к весу ПАК модифицированного полиакрилонитрила (0.33 г) и 20% глицерина (3.28 г). Полученный формовочный раствор тщательно перемешивают и дегазируют. Затем слой формовочного раствора наносят на стеклянную пластину размером 20×20 см2 с помощью фильеры, имеющей зазор 0,3 мм. Стекло с равномерным слоем полимерного раствора переносят в осадительную ванну, заполненную 40%-ным водным раствором этилового спирта. После отставания от стекла полимерной мембраны содержимое осадительной ванны выливают, стекло вынимают, а ванну с мембраной заливают 1 л чистого осадителя. Мембрану выдерживают в осадительной ванне 2 ч. Сформованную мембрану достают из осадительной ванны и промывают в этаноле, затем в гексане и помещают в ванну с 50%-ным раствором масла ПМС-100 в гексане, где выдерживают 20 ч. Далее мембрану сушат 7 ч при температуре 40°C, помещают в термостат и подвергают ступенчатой термообработке до 300°C со скоростью подъема температуры 10 град/мин для достижения полной имидизации полиимидоамидокислоты и циклизации полиакрилонитрила.

Мембрана включает селективный поверхностный слой толщиной 10 мкм с порами размером 100Å, расположенный на микропористой подложке толщиной 200 мкм, имеющей пальцеобразную морфологию. Согласно данным электронной микроскопии (фиг.1 и 2), мембраны, полученные по заявляемому способу и способу прототипу, обладают разной морфологией микропористой подложки. Мембрана, полученная по заявляемому способу из композиции поли-(4,4'-оксидифенилен)пиромеллитимида и циклизованного полиакрилонитрила обладает белее совершенной пальцеобразной морфологией микропористой подложки (фиг.1), в то время как поли-(4,4'-оксидифенилен)пиромеллитимидная мембрана, полученная по способу, прототипу, имеет губчатую структуру микропористой подложки (фиг.2).

Мембрана характеризуется коэффициентом проницаемости по воде Q=80·10-6 м/сек атм и номинальной молекулярной массой задержания ML=160·103 г/моль (табл.1, обр.3).

Пример 2. Способ получения аналогичен описанному в примере 1 за исключением использования 10%-ного раствора полиамидокислоты, 30 мас.% к весу ПАК модифицированного полиакрилонитрила и 30% глицерина.

Мембрана характеризуется коэффициентом проницаемости по воде Q=300·10-6 м/сек атм и номинальной молекулярной массой задержания ML=350·103 г/моль (табл. 1, обр.1).

В табл.2 приведены характеристики термостойкости полученной мембраны: температуры (τ1, τ5 и τ10), по достижении которых масса мембраны падает в результате термодеструкции на 1, 5 и 10% соответственно. Здесь же приведены характеристики термостойкости УФ мембраны ПИ ПМ, полученной по способу-прототипу. Видно, что композиционная мембрана обладает более высокой термостойкостью.

Пример 3. Способ получения аналогичен описанному в примере 1 за исключением использования 14%-ного раствора полиамидокислоты, 10 мас.% к весу ПАК модифицированного полиакрилонитрила и 20% глицерина.

Мембрана характеризуется коэффициентом проницаемости по воде Q=5·10-6 м/сек атм и номинальной молекулярной массой задержания ML=20·103 г/моль (табл.1, обр.4).

Пример 4. Способ получения аналогичен описанному в примере 1 за исключением использования 11%-ного раствора полиамидокислоты, 30 мас.% к весу ПАК модифицированного полиакрилонитрила и 20% глицерина.

Мембрана характеризуется коэффициентом проницаемости по воде Q=180·10-6 м/сек атм и номинальной молекулярной массой задержания ML=260·103 г/моль (табл.1, обр.2).

Пример 5. Способ получения аналогичен описанному в примере 1 за исключением использования немодифицированного линейного полиакрилонитрила. Получен неоднородный формовочный полимерный раствор, при осаждении которого формуется макродефектная мембрана

Пример 6. Способ получения аналогичен описанному в примере 1 за исключением использования модифицированного с помощью раствора КОН линейного полиакрилонитрила, за счет чего часть нитрильных групп превращена в циклические последовательности, содержащие 2-3 иминных цикла. При формовании раствора этой полимерной композиции получена изотропная малопористая мембрана.

Таблица 1
Условия формования и характеристики УФ полимерных мембран из композиции поли-(4,4'-оксидифенилен)пиромеллитимида и циклизованного полиакрилонитрила
№п/п ПАК ПМ, концентрация формовочного раствора, % модифицированный ПАН, содержание в композиции, мас.% глицерин, концентрация формовочного раствора, % мембрана композиции ПИ ПМ и цикл. ПАН
Q·10-6, м/сек атм ML·103 г/моль
1 10 30 30 300 350
2 11 30 20 180 260
3 12 20 20 80 160
4 14 10 20 5 20

Таблица 2
Характеристики термостойкости УФ полимерных мембран
№, п/п Состав исходной композиции τ1, °С τ5, °С τ10, °C
1 ПАК+ПАН (10%)+глицерин (20%) 414 497 523
2 ПАК+бензимидазол - хим. цикл., (прототип) 402 459 480

Выход за рамки заявленных интервальных параметров (примеры 5, 6) приводит к невозможности реализации заявляемого изобретения, что подтверждает правильность выбранных операций, режимов и параметров.

Таким образом, разработанный способ позволяет сделать более технологичной и процедуру получения мембран, исключающую использование вредных химических реагентов в качестве катализатора имидизации. Модифицированный полиакрилонитрил в составе мембраны выполняет функции катализатора имидизации, а также полимерной добавки, способствующей процессу осаждения и формирования пористой структуры. Использованный подход позволяет получить мембраны, которые характеризуются коэффициентом проницаемости по воде Q=(5-300)·10-6 м/сек атм, номинальной молекулярной массой задержания ML=(10-350)·103 г/моль, термостойкостью не ниже 400°С, отсутствием растворимости и набухания во всех обычных органических растворителях, включая амидные, химической стойкостью в водных кислых средах. Температура долговременной эксплуатации мембран составляет 200-300°C.

1. Способ получения ультрафильтрационной термостойкой полимерной мембраны, включающий приготовление формовочного раствора полимера в амидном растворителе, нанесение его на стеклянную пластину и погружение в осадительную водно-спиртовую ванну с последующим высушиванием прогревом, отличающийся тем, что в формовочный раствор поли-(4,4'-оксидифенилен)пиромеллитимидокислоты вводят 10-30 мас.% частично циклизованного полиакрилонитрила, в котором нитрил- и карбонилсодержащие звенья чередуются с последовательностями от трех до шести иминных циклов, добавляют 10-30 мас.% глицерина в качестве порообразователя, после формования в водной осадительной ванне, содержащей 20-60 мас.% этилового спирта, мембрану переводят в 20-60%-ный раствор высококипящего полиметилсилоксанового масла в органическом растворителе, а прогрев мембран осуществляют до 250-300°С до полной имидизации полиамидокислоты и циклизации полиакрилонитрила.

2. Способ по п.1, отличающийся тем, что используют амидный растворитель из ряда: N,N'-диметилформамид, N,N'-диметилацетамид, N-метил-2-пирролидон.

3. Способ по п.1, отличающийся тем, что в качестве органического растворителя масла используют растворитель из ряда: гексан, гептан, петролейный эфир.



 

Похожие патенты:
Изобретение относится к технологии получения ультрафильтрационных термо-, тепло- и химически стойких полиимидных ультрапористых мембран и может найти применение в мембранных технологиях, в частности, при температурах выше 200°С и в агрессивных средах.

Изобретение относится к композиционным протонпроводящим полимерным мембранам на основе (со)полимерных линейных матриц. .

Изобретение относится к области химии высокомолекулярных соединений, точнее к способу получения композиционных полимерных диффузионных мембран, и может быть использовано в химической и нефтехимической, а также в иных отраслях промышленности.

Изобретение относится к области химии высокомолекулярных соединений, точнее к способу получения композитных полимерных первапорационных мембран, представляющих собой мультислойное изделие, выполненное из слоев на основе полимеров различной структуры.

Изобретение относится к высокоселективным мембранам для разделения газов методом газопроницаемости. .

Изобретение относится к области химии высокомолекулярных соединений, точнее, к способу получения композитных полимерных первапорационных мембран, представляющих собой многослойное, содержащее по крайней мере два слоя изделие.

Изобретение относится к получению асимметричных полимерных первапорационных мембран и может быть использовано в химической, нефтехимической и других отраслях промышленности для разделения смесей органических жидкостей, содержащих алифатические спирты.

Изобретение относится к области разделения смесей газов и может быть использовано в химической и нефтехимической промышленности, в медицине и здравоохранении, в сельском хозяйстве.

Изобретение относится к физической химии высокомолекулярных соединений, конкретно к способу получения композиционных двухслойных полимерных мембран для дегидратации водно-спиртовых смесей методом первапорации.

Изобретение относится к получению композиционных двухслойных полимерных мембран для дегидратации водно-органических смесей методом первапорации и может быть использовано в пищевой, химической промышленности, биотехнологии и медицине.

Изобретение относится к мембранным технологиям и предназначено для изготовления новых мембран для разделения спиртовых смесей методом первапорации

Изобретение относится к технологии получения синтетических волокон, в частности к полым волокнам на основе полиамидоимида, и может быть использовано в мембранах для газоразделительных устройств. Приготавливают прядильный раствор, содержащий в апротонном растворителе 20-25 мас. % полиамидоимида и 5-15 мас. % органического соединения, выбранного из группы, включающей бензотриазол, бензоимидазол и имидазол. Сухо-мокрым способом формуют полое волокно из упомянутого раствора. Волокно промывают и сушат. Последующую термическую обработку проводят при температуре, не превышающей 360°C. Изобретение позволяет получить полое волокно на основе полиамидоимида, обладающее высокими прочностными свойствами и селективной способностью в отношении разделяемых газов - азота и кислорода. 2 н. и 1 з.п. ф-лы, 2 ил., 1 табл., 9 пр.

Изобретение относится к мембранным технологиям, составу и структуре мембран, предназначенных для разделения смеси простейших моно- и двухатомных спиртов методом первапорации. В качестве материала мембраны используют композицию, включающую поли(2,6-диметил-1,4-фениленоксид) и гибридный звездообразный полимер с фуллерен (С60 )- центром ветвления и с лучами из неполярного полимера полистирола и полярного диблок-сополимера (поли-2-винилпиридин-блок-поли-трет-бутилметакрилат) в количестве 1-5 мас.%. Мембрана представляет собой плотную пленку толщиной 25÷30 мкм. При использовании мембраны, содержащей 5 мас.% гибридного звездообразного полимера, селективность отделения метанола равна 930 при первапорации смеси, содержащей 5% метанола в этиленгликоле. Кроме того, мембрана характеризуется длительным временем эксплуатации, а также устойчивостью по отношению к разделяемым смесям в широком диапазоне концентраций. 8 ил., 2 табл., 4 пр.

Изобретение относится к области химии высокомолекулярных соединений, конкретно к нано- и гибридным функциональным материалам. Мембрана получена из полимерного материала с преобладающей проницаемостью для метанола. В качестве полимерного материала мембраны использован нанокомпозит на основе полифенилен-изо-фталамида, содержащий 1-3 мас.% наноалмазов. Мембрана выполнена в виде непористой плотной пленки толщиной 15-40 мкм. Указанный нанокомпозит получен твердофазным взаимодействием в результате диспергирования порошка наноалмазов в матрице полифенилен-изо-фталамида. Мембрана характеризуется высокой разделительной способностью при первапорации смеси метанол-метилацетат, длительным временем эксплуатации, а также устойчивостью по отношению к разделяемым смесям. 1 з.п. ф-лы, 1 табл., 4 пр.

Группа изобретений относится к получению полимерного материала, такого как полимерные мембраны, газоразделительные мембраны, а также к разделению компонентов текучей среды. Получают полимерную матрицу, содержащую, по меньшей мере, один полимер и, по меньшей мере, один порообразователь. Посредством разложения, по меньшей мере, одного порообразователя при температуре менее или равной Tg, где Tg представляет собой температуру стеклования полимерной матрицы, образуется полимерный материал. Стадия разложения включает направление полимерной матрицы на термическое разложение, химическое разложение, электрическое разложение и радиационное разложение. Проницаемость полимерного материала составляет, по меньшей мере, в 1,2 раза больше, чем проницаемость полимерной матрицы для газа, а селективность полимерного материала составляет для данной пары газов, по меньшей мере, 0,35-кратную селективность полимерной матрицы. Способ предусматривает газоразделительные мембраны, которые превышают верхнюю границу соотношения Робсона, по меньшей мере, для одной пары разделяемых газов. Описаны также новые полимерные материалы, газоразделительные мембраны и способы разделения текучих компонентов. 4 н. и 22 з.п. ф-лы, 8 ил., 4 табл., 13 пр.

В изобретении раскрыт новый тип полиимидных мембран с высокими проницаемостями и высокими селективностями в отношении разделения газов, а конкретно, и в отношении вариантов разделения CO2/CH4 и H2/CH4. В отношении разделения CO2/CH4 полиимидные мембраны имеют пропускающую способность по CO2, равную 50 Баррер или выше, и селективность CO2/CH4 моногаза, равную 15 или выше, при 50°С и 791 кПа. Полиимидные мембраны содержат поперечно сшиваемые при воздействии УФ-лучей функциональные группы и могут быть использованы для изготовления поперечно сшитых под действием УФ-лучей полиимидных мембран, имеющих пропускающую способность по CO2, равную 20 Баррер или выше, и селективность CO2/CH4 моногаза, равную 35 или выше, при 50°С и 791 кПа в отношении разделения CO2/CH4. 2 н. и 8 з.п. ф-лы, 4 табл., 15 пр.

Изобретение относится к полиимидным мембранам, которые могут быть либо плоскими мембранами, либо мембранами из полых волокон. Полиимидные мембраны могут являться пористыми мембранами в виде микро-, ультра- или нанофильтрационных мембран или непористыми мембранами, применяемыми для разделения газов. Способ изготовления полиимидных мембран включает стадии получения полиимида путем поликонденсации ароматического диангидрида тетракарбоновой кислоты с ароматическим диизоцианатом в апротонном диполярном растворителе, приготовления содержащего полиимид литьевого раствора и изготовления полиимидной мембраны из литьевого раствора, причем полиимид не выделяют между первыми двумя стадиями в виде твердого вещества и не растворяют вновь, и причем изготовление мембраны осуществляют методом фазовой инверсии. Изобретение позволяет получить мембраны, обладающие хорошими механическими свойствами, стойкостью к воздействию давления в процессе эксплуатации и селективностью к различным газам. 3 н. и 12 з.п. ф-лы, 3 ил., 5 табл., 22 пр.

Изобретение относится к газоразделительным мембранам. Газоразделительная мембрана включает полиимид, который содержит повторяющееся звено, представленное общей формулой (1) В формуле (1) R1 является двухвалентной органической группой, a R2 является четырехвалентной органической группой. R1 содержит 2-гидрокси-1,1,1,3,3,3-гексафторизопропильную группу или 2-гидрокси-1,1,1,3,3,3-гексафторизопропильную группу, в которой атом водорода группы ОН замещен глицидильной группой. Изобретение позволяет получить полиимид, который проявляет высокую растворимость в органическом растворителе и превосходную формуемость, а также хорошо применим для газоразделительной мембраны. 18 з.п. ф-лы, 10 табл.
Наверх