Топливный элемент с твердооксидным электролитом

Изобретение относится к области прямого получения электроэнергии из природного топлива, а именно к области высокотемпературных топливных элементов. Согласно изобретению топливный элемент с твердооксидным электролитом содержит твердый оксидный электролит с электродными покрытиями на противоположных сторонах электролита, причем поверхность электролита интеркалирована оксидами металлов-стабилизаторов, выбранных из ряда иттрий, скандий, алюминий, кальций, лантаноиды, уран, глубина интеркалирования составляет 0,5-2,5 мкм, а содержание интеркалированных металлов-стабилизаторов составляет 2-10 мол.%. Техническим результатом является расширение зоны трехфазной границы с увеличением достижимых плотностей тока нагрузки. 2 з.п. ф-лы.

 

Предлагаемое техническое решение относится к области прямого получения электроэнергии из природного топлива, а именно к области высокотемпературных топливных элементов.

Известен высокотемпературный электрохимический конвертор для углеводородного топлива и система топливных элементов для получения электроэнергии (патент РФ №2172543).

Известна также батарея твердооксидных топливных элементов, каждый из которых содержит электролит с электродными покрытиями на противоположных сторонах (патент РФ №2129323), выбранная за прототип.

Недостатком известных топливных элементов с твердым электролитом является ограниченность трехфазной границы твердый электролит-электрод-газовая фаза, что ограничивает плотность тока нагрузки.

Сущность предлагаемого технического решения заключается в том, что поверхность электролита интеркалирована оксидами металлов-стабилизаторов, выбранных из ряда иттрий, скандий, алюминий, кальций, лантаноиды, уран, глубина интеркалирования составляет 0,5-2,5 мкм, а содержание интеркалированных металлов-стабилизаторов составляет 2-10 мол.%.

Предлагаемое техническое решение относится в первую очередь к твердым электролитам на основе диоксида циркония, стабилизированного оксидами трех- и двухвалентных металлов. Интеркалирование оксидами металлов-стабилизаторов приводит к появлению смешанной проводимости, частичной эрозии поверхности и, как следствие, расширению зоны трехфазной границы с увеличением достижимых плотностей тока нагрузки.

Пример 1. Поверхность диоксидциркониевого электролита интеркалирована оксидом иттрия до глубины 0,5 мкм и содержанием 2 мол.%. После нанесения электродов проведены измерения плотности тока в процессах окисления водорода и переноса кислорода. При поляризации 50 мВ достигнута плотность тока 140 мА/см2.

Пример 2. Поверхность диоксидциркониевого электролита интеркалирована оксидом иттрия до глубины 1 мкм и содержанием 5 мол.%. После нанесения электродов проведены измерения плотности тока в процессах окисления водорода и переноса кислорода. При поляризации 50 мВ достигнута плотность тока 180 мА/см2.

Пример 3. Поверхность диоксидциркониевого электролита интеркалирована оксидом иттрия до глубины 2,5 мкм и содержанием 10 мол.%. После нанесения электродов проведены измерения плотности тока в процессах окисления водорода и переноса кислорода. При поляризации 50 мВ достигнута плотность тока 160 мА/см2.

Пример 4. Поверхность диоксидциркониевого электролита интеркалирована оксидом скандия до глубины 2 мкм и содержанием 5 мол.%. После нанесения электродов проведены измерения плотности тока в процессах окисления водорода и переноса кислорода. При поляризации 50 мВ достигнута плотность тока 210 мА/см2.

Пример 5. Поверхность диоксидциркониевого электролита интеркалирована оксидом иттрия до глубины 0,2 мкм и содержанием 1,5 мол.%. После нанесения электродов проведены измерения плотности тока в процессах окисления водорода и переноса кислорода. При поляризации 50 мВ достигнута плотность тока 90 мА/см2.

Таким образом, использование существенных признаков заявляемого технического решения, а именно: поверхность электролита интеркалирована оксидами металлов-стабилизаторов, выбранных из ряда иттрий, скандий, алюминий, кальций, лантаноиды, уран, глубина интеркалирования составляет 0,5-2,5 мкм, а содержание интеркалированных металлов-стабилизаторов составляет 2-10 мол.%, приводит к достижению поставленной цели - увеличения плотности тока нагрузки.

1. Топливный элемент с твердооксидным электролитом, содержащий твердый оксидный электролит с электродными покрытиями на противоположных сторонах, отличающийся тем, что поверхность электролита интеркалирована оксидами металлов-стабилизаторов, выбранных из ряда иттрий, скандий, алюминий, кальций, лантаноиды, уран.

2. Топливный элемент по п.1, отличающийся тем, что глубина интеркалирования составляет 0,5-2,5 мкм.

3. Топливный элемент по п.1, отличающийся тем, что содержание интеркалированных металлов-стабилизаторов составляет 2-10 мол.%.



 

Похожие патенты:
Изобретение относится к энергетике, прямому преобразованию химической энергии в электрическую, и может быть использовано в электрохимии для измерения составов сред в качестве измерительного преобразователя концентрации окислителя или восстановителя в среде.
Изобретение относится к области высокотемпературных электрохимических устройств с твердым кислородионным электролитом и может быть использовано в качестве электролизера, топливного элемента или другого аналогичного устройства.
Изобретение относится к области высокотемпературных электрохимических устройств с твердым кислородионным электролитом и может быть использовано в качестве электродов при создании электролизеров, топливных элементов и других устройств.

Изобретение относится к высокотемпературным топливным элементам, в частности к твердооксидным топливным элементам. .

Изобретение относится к штабелю (10) высокотемпературных топливных элементов, стягиваемому с помощью временного стягивающего устройства, также к способу временной затяжки штабеля (10) топливных элементов и к способу удаления временного стягивающего устройства (12-22) для штабеля (10) высокотемпературных топливных элементов.

Изобретение относится к области твердооксидных топливных элементов. .

Изобретение относится к высокотемпературных электрохимическим устройствам с твердым электролитом. .

Изобретение относится к области топливных элементов и может быть использовано для создания источников тока в различных отраслях промышленности. .

Изобретение относится к электрохимическим элементам. .

Изобретение относится к узлу соединения в высокотемпературном электрохимическом устройстве

Изобретение относится к области химических источников энергии (электрического тока) с прямым преобразованием химической энергии в электрическую

Изобретение относится к электрохимическим устройствам и применяется в источниках электрической энергии на основе высокотемпературных твердооксидных топливных элементов
Изобретение относится к высокотемпературным электрохимическим устройствам различного назначения
Изобретение относится к области электрохимической энергетики, а именно к высокотемпературным топливным элементам с твердым электролитом

Изобретение относится к электрохимическим устройствам и применяется в источниках электрической энергии на основе высокотемпературных твердооксидных топливных элементов

Изобретение относится к области водородной энергетики и представляет собой способ изготовления твердооксидных топливных элементов

Изобретение относится к области твердотельных электрохимических устройств

Изобретение относится к области электротехники, в частности, к многослойному покрытию, предназначенному для защиты металлов и сплавов от окисления при высоких температурах, которое может быть использовано в качестве покрытия для нанесения на соединительные материалы в твердооксидных электролитических устройствах, в том числе твердооксидных топливных элементах (ТОТЭ) и твердооксидных электролизерах (ТОЭ)

Изобретение относится к конструкции батарей твердооксидных топливных элементов (ТОТЭ), и более конкретно к конструкциям батарей элементов указанного типа, состоящим из металлических несущих трубчатых решеток с внутренними мембранами в виде топливных элементов
Наверх