Способ размещения отсчетов быстрого преобразования фурье в памяти данных



Способ размещения отсчетов быстрого преобразования фурье в памяти данных
Способ размещения отсчетов быстрого преобразования фурье в памяти данных
Способ размещения отсчетов быстрого преобразования фурье в памяти данных
Способ размещения отсчетов быстрого преобразования фурье в памяти данных

Владельцы патента RU 2388076:

Общество с ограниченной ответственностью "Уральская Архитектурная Лаборатория" (RU)

Изобретение относится к вычислительной технике и может быть использовано при построении параллельных вычислительных систем. Техническим результатом является возможность одновременного доступа к отсчетам быстрого преобразования Фурье, размещенным в памяти традиционным способом. Указанный технический результат достигают тем, что в прямоугольной матрице отсчетов размерностью s×m, где: s - количество строк, m - количество столбцов, причем s*m равно 2p, m равно 2q, а р и q - целые числа и q больше или равно 1, а р больше q, для всех строк прямоугольной матрицы отсчеты, находящиеся в одной строке, размещают в столбцах с циклическим сдвигом относительно прямоугольного размещения вправо (влево) на Sh позиций: , где n=[p-q+1]/q-1; si - коэффициент номера строки sn, представленной в виде sn=snmn+…+s2m2+s1m1+s0m0.

 

Изобретение относится к вычислительной технике и может быть использовано при построении параллельных вычислительных систем.

Известно устройство - синергическая вычислительная система (пат. №2179333 RU). Система состоит из N функциональных блоков, в качестве которых могут использоваться процессорные элементы, и полносвязного коммутатора. Архитектура процессорных элементов и коммутатора обеспечивают реализацию параллелизма на командном уровне, представленного в виде ярусно-параллельной формы. Так, например, фрагмент программы, обеспечивающий вычисление «бабочек» быстрого преобразования Фурье для системы, состоящей из четырех процессорных элементов, будет иметь следующий вид:

РЕ0 РЕ1 РЕ2 РЕ3
RD a RD b RD с RD d
MOV ~0 MULC ~1, W1 MOV ~2 MULC ~3, W2
ADDC ~0, ~1 SUBC ~0, ~1 ADDC ~2, ~3 SUBC ~2, ~3
MOV ~0 MOV ~1 MULC ~2, W3 MULC ~3, W4
ADDC ~0, ~2 ADDC ~1, ~3 SUBC ~0, ~2 SUBC ~1, ~3
WR a WR b WR c WR d

где RD - операция чтения, MOV ~j - передача результата выполнения команды предыдущего яруса j-того процессорного элемента на следующий ярус; MULC ~j, Wi - комплексное умножение результата выполнения команды предыдущего яруса j-того процессорного элемента на коэффициент; ADDC ~j, ~i, SUBC ~j, ~i - операции комплексного сложения и комплексного вычитания, соответственно, результатов j-того и i-того процессорных элементов с предыдущего яруса, WR - операция записи.

Таким образом, для четырех отсчетов (а, b, с, d) две ступени вычисления «бабочек» выполняются за шесть шагов.

Каждый процессорный элемент имеет в своем составе память данных, в которой размещаются введенные отсчеты для выполнения преобразования. Для m процессорных элементов, где m равно 2q, a q - целое число больше или равно 1, массив 2p отсчетов, где р - целое число больше q, можно представить в виде прямоугольной матрицы размерностью s×m. Введенные отсчеты могут быть записаны построчно:

либо по столбцам

Очевидно, что и в первом, и во втором случае наиболее быстро вычисляется только q ступеней преобразования. При построчном размещении - это первые ступени быстрого преобразования Фурье с прореживанием по времени. При размещении по столбцам - это также первые ступени, но с использованием быстрого преобразования Фурье с прореживанием по частоте. Для вычисления «бабочек» на последующих ступенях преобразования необходимо выбирать отсчеты, которые размещаются в памяти данных одного процессорного элемента. При этом меняется программа вычисления «бабочки» и каждый процессорный элемент начинает работать автономно. Это увеличивает количество команд на вычисление «бабочки» и, следовательно, снижает быстродействие синергической вычислительной системы, что является недостатком как первого, так и второго способа размещения отсчетов в памяти данных.

Следует отметить, что этот недостаток присущ любой параллельной системе, использующей указанный способ размещения отсчетов.

Задача настоящего изобретения - повышение производительности параллельных вычислительных систем при выполнении быстрого преобразования Фурье.

Поставленная задача решается тем, что в указанной прямоугольной матрице отсчетов размерностью s×m, где s - количество строк, m - количество столбцов, причем s*m равно 2р, m равно 2q, а р и q - целые числа и q больше или равно 1, а р больше q, согласно изобретению для всех строк прямоугольной матрицы отсчеты, находящиеся в одной строке, размещают в столбцах с циклическим сдвигом относительно прямоугольного размещения вправо (влево) на Sh позиций:

где

n=[p-q+1]/q-1;

si - коэффициент номера строки sn, представленной в виде sn=snmn+…+s2m2+s1m1+s0m0.

Признаки в указанной взаимосвязи в процессе проведения поиска на новизну не обнаружены, являются существенными и в своей совокупности обеспечивают повышение производительности параллельных вычислительных систем при вычислении быстрого преобразования Фурье. Достигается это тем, что при предложенном «закрученном» размещении отсчетов в m блоках памяти данных с возможностью одновременной выборки, на любой ступени вычисления быстрого преобразования Фурье обеспечивается одновременная выборка всех необходимых на данном шаге отсчетов.

Рассмотрим быстрое преобразование Фурье с прореживанием по времени на 64 отсчета(26), которые размещены в 4-х блоках памяти процессорных элементов. В исходном состоянии отсчеты (с учетом бит-реверсивной перестановки) введены и хранятся в памяти данных построчно (в соответствующих позициях матрицы приведены номера отсчетов):

Очевидно, что первые две ступени, содержащие «вырождение бабочки», не требуют перестановки отсчетов. Для выполнения первых двух «бабочек» третьей и четвертой ступеней необходимы отсчеты с номерами {0, 4, 8, 12}, которые находятся в памяти данных нулевого процессорного элемента. Разместим отсчеты в соответствии с предлагаемым способом, осуществляя циклический сдвиг вправо:

Необходимые отсчеты теперь размещаются в разных столбцах и могут быть прочитаны одновременно (одним ярусом команд). Так как отсчеты размещаются в разных строках, то для вычисления номера строки, в соответствующем блоке памяти, можно воспользоваться формулой:

v=[sn/qcf]*qcf+(sn mod qcf+npe*(m**(cf-1)))mod qcf,

где

v - номер строки;

sn - текущий номер строки (номер шага), изменяется от 0 до s-1;

qcr=m*cf, если m**cf≤s, иначе qcf=s;

cf - номер прохода по массиву отсчетов, а именно вычисление первой и второй ступеней - «0-ой» проход, вычисление третьей и четвертой ступеней - 1-ый проход и т.д., количество ступеней, реализуемых за один проход по массиву отсчетов, определяется m;

npe - номер процессорного элемента (номер блока памяти).

Для выполнения последующих «бабочек» третьей и четвертой ступеней при sn=1 будет выбран набор отсчетов с номерами {7, 11, 15, 3}, при sn=2 - {10, 14, 2, 6}, при sn=3 - {13, 1, 5, 9}, при sn=4 - {19, 23, 27, 31} и т.д. Выбранный набор отсчетов должен быть переставлен местами путем циклического сдвига влево на m-Sh позиций, а массив коэффициентов должен быть сформирован в соответствии с порядком выборки отсчетов.

В синергической вычислительной системе предложенный способ размещения может быть реализован следующим образом:

(a) в состав процессорного элемента вводятся аппаратно модифицируемые регистры, содержащие sn, cf, а также регистры, содержащие значения m и s, задаваемые программистом;

(b) вводится режим модификации адресов доступа к коммутатору, позволяющий динамически изменить заданное программистом значение на аппаратно формируемую константу;

(c) вводятся две специализированные команды «чтение из массива отсчетов» и «запись в массив отсчетов».

Команда «чтение из массива отсчетов» (мнемокод SRD) имеет один операнд М - адрес массива отсчетов и на основании значений sn, cf, m, s формирует исполнительный адрес для чтения отсчета, а также формирует значение константы модификации адреса доступа к коммутатору для команды следующего и только следующего яруса. Это значение равно величине обратного сдвига и суммируется с адресом коммутатора. Так для cf=1 и sn=1 величина константы будет равна 4-1=3 и команда MOV ~0 в последовательности команд:

РЕ0

SRD M

MOV ~0

передаст на следующий ярус значение, считанное РЕ3.

Команда «запись в массив отсчетов» имеет два операнда - записываемое значение и адрес массива отсчетов. На основании значений sp, sf, m, s она формирует исполнительный адрес для записи отсчета, формирует значение обратного сдвига как константу для модификации своего адреса доступа к коммутатору и модифицирует его путем вычитания ее из адреса. Модифицирует значения sn, а после выполнения последнего шага очередного прохода - значение cf.

Способ построчного размещения или размещения по столбцам отсчетов быстрого преобразования Фурье в виде прямоугольной матрицы размерностью sxm, где s - количество строк, m - количество столбцов, причем s×m равно 2p, m равно 2q, а р и q - целые числа и q больше или равно 1, а р больше q, расположенной в памяти данных параллельной вычислительной системы, состоящей из m блоков данных с возможностью одновременной выборки, каждый из которых содержит отсчеты соответствующего столбца, отличающийся тем, что для всех строк прямоугольной матрицы все отсчеты, находящиеся в одной строке, размещают в столбцах с циклическим сдвигом относительно прямоугольного размещения вправо (влево) на Sh позиций:

где n=[p-q+1]/q-1;
si - коэффициент номера строки sn, представленной в виде sn=snmn+…+s2m2+s1m1+s0m0.



 

Похожие патенты:

Изобретение относится к игровым системам и, в частности, к способам и средствам, позволяющим определять местоположение игрового устройства в казино. .

Изобретение относится к устройству хранения данных, к способу осуществления бездеструктивного считывания данных и способу придания поляризации парам субъячеек памяти.

Изобретение относится к средствам, обеспечивающим возможность адресации в устройстве, содержащем один или более объемных элементов. .

Изобретение относится к схеме для генерации отрицательных напряжений с первым транзистором, первый вывод которого соединен с входным выводом схемы и второй вывод которого соединен с выходным выводом схемы и вывод затвора которого соединен через первый конденсатор с первым выводом тактового сигнала, со вторым транзистором, первый вывод которого соединен с выводом затвора первого транзистора, второй вывод которого соединен со вторым выводом первого транзистора и вывод затвора которого соединен с первым выводом первого транзистора и со вторым конденсатором, первый вывод которого соединен со вторым выводом первого транзистора, а второй вывод которого соединен со вторым выводом тактового сигнала, причем транзисторы являются МОП-транзисторами, выполненными, по меньшей мере, в одном тройном кармане (Triple Well).

Изобретение относится к устройству для создания отрицательного высокого напряжения, которое требуется, например, для программирования электрически стираемой программируемой постоянной флэш-памяти.

Изобретение относится к вычислительной цифровой технике, конкретно к конструкции ячейки памяти с вертикально расположенными друг над другом пересечениями. .

Изобретение относится к ПЗУ Х-конфигурации. .

Изобретение относится к радиотехнике и может быть использовано для целей радиоконтроля, согласованной фильтрации преднамеренных помех, скрытого определения характеристик источников радиоизлучения и для демодуляции сигнала с неизвестной структурой.

Изобретение относится к системам связи. .

Изобретение относится к обработке информационных сигналов и может использоваться для обработки аудиосигналов, видеосигналов или других мультимедийных сигналов. .

Изобретение относится к области радиотехники. .

Изобретение относится к устройству и способу обработки цифрового сигнала в мобильном терминале системы беспроводной связи с множественным доступом с ортогональным частотным разделением каналов (OFDMA).

Изобретение относится к радиотехнике и может использоваться в радиолокационных станциях в режимах сопровождения целей для обработки полифазных импульсных фазокодоманипулированных сигналов с неизвестной частотой Доплера, кодированных ансамблями ортогональных кодов.

Изобретение относится к средствам специализированной вычислительной техники и может найти применение в спектральном анализе сигналов в реальном масштабе времени.

Изобретение относится к вычислительной технике и может быть использовано для обработки сигналов для последовательно поступающих значений. .

Изобретение относится к вычислительной технике и может быть использовано в устройствах цифровой обработки сигналов, в частности устройствах, выполняющих БПФ массивов произвольной размерности N=2r.

Изобретение относится к цифровой вычислительной технике и может быть использовано в радиолокационных системах (РЛС) в устройствах измерения радиальных скорости и дальности цели.

Изобретение относится к выравниванию сетевой нагрузки. .
Наверх