Способ измерения плотности

Изобретение относится к области измерительной техники, в частности к пневматическим способам измерения плотности твердой фазы гетерогенных систем, например, сыпучих материалов и твердых тел неправильной формы, и может найти применение в различных отраслях промышленности. Техническим результатом изобретения является повышение точности измерения плотности сыпучих веществ и твердых тел различной формы, а также обеспечение оперативности контроля за счет использования единого измерительного процесса. Способ измерения плотности реализуется путем определения массы контролируемого вещества и помещения его в измерительную емкость, уменьшения ее объема и измерения изменения давления заключается в измерении изменения давлений в измерительной емкости до и после помещения в нее контролируемого вещества при изменении объема измерительной емкости на заданную величину пропорционально массе вещества. По отношению изменений давлений судят о плотности вещества. 1 ил.

 

Изобретение относится к области измерительной техники, в частности к пневматическим способам измерения плотности твердой фазы гетерогенных систем, например, сыпучих материалов и твердых тел неправильной формы, и может найти применение в различных отраслях промышленности.

Известен способ измерения плотности по массе и объему вещества, в котором осуществляют взвешивание пробы вещества, после чего определяют его объем и по их отношению судят о насыпной плотности вещества (Пестов Н.Е. Физико-химические свойства зернистых и порошкообразных химических продуктов. М. - Л.: Изд-во АН СССР, 1947. - С.152). Недостатками такого способа измерения плотности являются невозможность определения циклометрической плотности вещества, а также отсутствие единства процесса измерения.

Известен способ измерения плотности путем измерения массы и объема вещества, позволяющий измерять пикнометрическую плотность вещества (Макаров Ю.И. Аппараты для смешивания сыпучих материалов. М.: Машиностроение, 1973. - 216 С.). В таком способе осуществляют взвешивание пробы вещества, после чего определяют его объем путем погружения в сосуд с жидкостью и фиксации объема вытесненной веществом жидкости. После измерения массы mв и объема Vв вещества определяют плотность ρв вещества из отношения ρв=mв/Vв.

Основной недостаток такого способа состоит в том, что он неприменим для измерения плотности пористых и сыпучих материалов, не допускающих смачивания какой-либо жидкостью.

Наиболее близким по технической сущности является способ измерения плотности (Кивилис С.С. Плотномеры. М.: Энергия, 1980. - С. 156), состоящий в том, что измерительную емкость с контролируемым веществом заполняют газом, и об объеме судят по изменению абсолютного давления в ней, а плотность определяют делением массы на полученный объем.

Недостатками способа, принятого за прототип, являются отсутствие единого измерительного процесса и невысокая точность, обусловленная влиянием изменения атмосферного давления на результат измерения.

Технической задачей изобретения является повышение точности измерения плотности сыпучих веществ и твердых тел различной формы, а также обеспечение оперативности контроля за счет использования единого измерительного процесса.

Поставленная техническая задача достигается за счет того, что измеряют изменения давлений в измерительной емкости до и после помещения в нее контролируемого вещества при изменении объема измерительной емкости на заданную величину пропорционально массе вещества и по отношению изменений давлений судят о плотности вещества.

На чертеже представлена схема устройства, реализующего способ измерения плотности.

Устройство содержит емкость 1 с контролируемым веществом 2, к верхней части которой присоединен цилиндр 3 с поршнем 4 и подключен измеритель давления 5.

Сущность способа заключается в следующем.

Изменяют объем изолированной измерительной емкости 1 на величину ΔV=kmв, где k - коэффициент пропорциональности, mв - масса контролируемого вещества, путем перемещения поршня 4 и измеряют изменение давления ΔP1 манометром 5.

После этого в измерительную емкость 1 объемом V1 помещают контролируемое вещество 2 с объемом Vв, изолируют объем измерительной емкости 1 и изменяют его на величину ΔV=kmв. Затем измеряют изменение давления ΔP.

Определяют отношение давлений ΔP/ΔP1, по значению которого судят о плотности контролируемого вещества 2.

Согласно уравнению газового состояния

где Pатм - начальное давление в измерительной емкости 1; θ - масса газа в измерительной емкости 1; R - газовая постоянная; T - температура газа в измерительной емкости 1.

После сжатия газа в емкости 1, путем перемещения поршня 4 на величину Δh, ее объем уменьшится на величину ΔV, а начальное давление увеличится на величину ΔP. Таким образом, состояние газа будет описываться уравнением

При условии постоянства величин θ, R и T из (1) и (2), согласно закону Бойля-Мариотта, получаем

Из уравнения (3) следует, что

С учетом ΔV=kmв уравнение (4) примет вид

или

В правую часть уравнения (5) входит атмосферное давление, изменение которого вызывает дополнительную погрешность. Исключить влияние давления Pатм на результат измерения можно следующим образом.

Если газ в измерительной емкости 1 до помещения в нее контролируемого вещества 2 сжать путем перемещения поршня 4 на заданную величину ΔV1, то согласно закону Бойля-Мариотта состояние газа в пустой измерительной емкости 1 до и после сжатия можно представить в виде

откуда

Подставляя (6) в (5), получим

откуда при условии ΔV1=ΔV=kmв

Выполнив преобразования в уравнении (7), получим

Преимуществом способа является то, что плотность оценивается по результатам измерения массы и объема контролируемого вещества в едином измерительном процессе, а также исключено влияние изменения атмосферного давления на результат измерения.

Способ измерения плотности путем определения массы контролируемого вещества и помещения его в измерительную емкость, уменьшения ее объема и измерения изменения давления, отличающийся тем, что измеряют изменения давлений в измерительной емкости до и после помещения в нее контролируемого вещества при изменении объема измерительной емкости на заданную величину пропорционально массе вещества и по отношению изменений давлений судят о плотности вещества.



 

Похожие патенты:

Изобретение относится к области измерительной техники, в частности к пневматическим способам измерения плотности твердой фазы гетерогенных систем (сыпучие материалы, тканые и нетканые материалы, пористая фильтрующая керамика, газонаполненные пластмассы (поропласты) и др.), и может найти применение в различных отраслях промышленности.

Изобретение относится к стройиндустрии, в частности к способам оценки качества твердых неорганических материалов, преимущественно имеющих мелкопористую структуру, и может быть использовано в строительстве, геологии и минералогии.

Изобретение относится к испытаниям в полевых или лабораторных условиях различных немодифицированных или модифицированных сыпучих сорбентов разного фракционного состава (простых абсорбентов, адсорбентов или хемосорбентов, а также сложных по их смесям конгломератов) на малых пробах при оценке их качества по емкости, скорости поглощения, поглотительной способности и другим показателям качества сорбентов.

Изобретение относится к нефтедобыче и может быть использовано для оперативного учета дебитов продукции нефтяных и газоконденсатных скважин в системах герметизированного сбора.

Изобретение относится к датчику для измерения плотности и вязкости текучей среды. .

Изобретение относится к области измерительной техники, в частности к пневматическим способам контроля поверхностного натяжения и плотности жидкости, и может найти применение в различных отраслях промышленности, таких как нефтяная, химическая, микробиологическая, пищевая и др.

Изобретение относится к измерению плотности текучей среды в резервуаре с использованием гамма-излучения. .

Изобретение относится к измерительной технике и предназначено для экспресс-анализа нефтепродуктов (топлив и масел) на нефтебазах, судах, заправочных станциях. .

Изобретение относится к области измерительной техники и может быть использовано в системах управления технологическими процессами

Изобретение относится к способам определения лигнина в целлюлозных полуфабрикатах

Изобретение относится к измерительной технике и предназначено для покомпонентного измерения потока нефти, который, как правило, дополнительно содержит свободный газ и воду, а также может быть использовано при измерениях газовых потоков в магистральных газопроводах, двухфазных потоков в различных областях промышленности, для замера трудно учитываемых жидкостей, например глинистые и цементные растворы

Изобретение относится к устройству и служит для определения концентрации азотной кислоты, тяжелых элементов и других веществ в технологических растворах радиохимического производства в аппаратах без избыточного давления при переработке отработанного ядерного топлива по значению измеренной плотности раствора

Изобретение относится к устройствам для исследования газового потока и может быть использовано для определения массового или объемного содержания в нем взвешенной жидкости

Изобретение относится к измерительной системе для измерения плотности протекающей по технологической магистрали, изменяющейся вдоль воображаемой оси течения измерительной системы в отношении термодинамического состояния, в частности, по меньшей мере, частично сжимаемой среды посредством датчика температуры, датчика давления, а также, по меньшей мере, временно связанного с датчиками температуры и давления измерительного электронного блока, который, по меньшей мере, временно формирует, по меньшей мере, одно измеренное значение плотности, максимально точно представляющее локальную плотность протекающей среды

Изобретение относится к измерительной технике и может быть использовано на замерных узлах газотранспортных предприятий, узлах коммерческого учета поставляемого газа, участках первичной переработки газа и других объектах, где проводятся измерения объемного или массового расхода газа, обусловливающие необходимость измерения (вычисления) плотности газа в рабочих или стандартных условиях

Изобретение относится к способу детектирования собранного количества вещества в виде твердых частиц и устройству детектирования собранного количества
Наверх