Способ предотвращения солеотложений, коррозии и биообрастаний в системах водоснабжения


 


Владельцы патента RU 2409523:

Государственное образовательное учреждение высшего профессионального образования Уральский государственный лесотехнический университет (RU)

Изобретение относится к способам предотвращения минеральных отложений, коррозии и биообрастаний и может быть использовано в водоподготовке замкнутых систем отопления, охлаждения, оборотного водоснабжения. Способ включает введение в обрабатываемую воду гексаметилендиаминтетраметиленфосфоновой кислоты и ее металлсодержащего комплексоната при мольном соотношении 3:1÷2:1. В качестве металлсодержащего комплексоната используют смесь комплексоната цинка и комплексоната меди при их мольном соотношении 0,75:0,25÷0,5:0,5 соответственно. Изобретение позволяет предотвратить биообрастание, солеотложение и коррозию в системах водоснабжения и обеспечить длительную бесперебойную работу систем закрытого водоснабжения и с требуемым качеством. 3 табл.

 

Изобретение относится к способам предотвращения минеральных отложений, коррозии и биообрастаний и может быть использовано в водоподготовке замкнутых систем отопления, охлаждения, оборотного водоснабжения.

Известен способ предотвращения минеральных отложений и биообрастаний путем введения композиций органофосфоната ИОМС и его медьсодержащего комплекса при их мольном соотношении 5:1÷1:1 [Патент России №2133229, МПК6 C02F 5/14, 1999].

Использование способа эффективно для подавления биообрастаний, но неэффективно для одновременного подавления солеотложений и коррозии.

Наиболее близким к предлагаемому способу является способ предотвращения минеральных отложений и коррозии путем введения в обрабатываемую воду композиций, содержащих гексаметилендиаминтетраметиленфосфоновую кислоту (ГМДТФ) и ее цинксодержащий комплексонат при их мольном соотношении 4:1÷2:1 [Патент России №2328453, C02F 5/14 (2006.01); C23F 11/167 (2006.01); C02F 103/04 (2006.01), 2008].

Этот способ обеспечивает снижение расхода реагентов (композиций их содержащих) при одновременном повышении эффективности обработки воды с целью предотвращения солеотложений и коррозии, но недостаточно эффективен для одновременного подавления биообрастаний, особенно для замкнутых систем водопользования, характерной особенностью которых является минимизация объема подпитки свежей водой. Отсутствие эффективности известного способа против биообрастаний приводит к развитию микрофлоры, т.к. азот и фосфор, входящие в состав органофосфонатов, и, в частности, ГМДТФ, являются продуктами жизнедеятельности бактерий. В конечном итоге, за счет снижения концентрации ГМДТФ снижается эффективность композиции ингибировать солеотложения и коррозию.

Задачей изобретения является повышение эффективности обработки воды в замкнутых системах водоснабжения за счет повышения эффективности подавления биообрастаний при одновременном повышении эффективности подавления солеотложений и коррозии.

Поставленная задача решается тем, что обработку воды ведут путем введения органофосфонатов, при этом в качестве органофосфоната используют гексаметилендиаминтетраметиленфосфоновую кислоту (ГМДТФ) и смесь ее цинк- и медьсодержащие комплексонатов при мольном соотношении ГМДТФ: смесь комплексонатов 3:1÷2:1, при этом мольное соотношение цинковых к медным комплексонатам составляет 0,75:0,25÷0,5:0,5 соответственно.

Заявленный способ иллюстрируется следующими примерами, проведенными с целью изучения ингибирующих свойств, подавления биообрастаний и солеотложений.

Примеры на ингибирование коррозии в сопоставлении с аналогом и прототипом.

В «химочищенную» воду чистого оборотного цикла сталеплавильного производства состава (мг/л): солесодержание - 479, Cu - 6, взвешенные вещества - 2, щелочность - 180, Fe - 0,12, Mn - 0,05, Cl - 19,5, нефтепродукты - 0,04, сульфаты 178, - вводили композицию ГМДТФ и ее цинк- и медьсодержащие комплексы при мольном соотношении ГМДТФ: смесь комплексонатов 3:1-2:1, мольное соотношение цинковых к медным комплексонатам варьировалось от 1:0 до 0:1, в количестве 5 мг/л. Герметично закрытые пробы выдерживали в термостатированном шкафу при температуре 60°С в течение 14 суток. По окончании экспозиции измеряли скорость коррозии при температуре 20°С, при перемешивании (1,2 м/сек) в непроточной ячейке двухэлектродными зондами, изготовленными из стали Ст.3 коррозиметром «Эксперт-004». Коэффициент торможения рассчитывали по формуле:

К=a o/a j,

где К - коэффициент торможения;

a o - скорость коррозии в контрольном опыте (без реагента);

a j - скорость коррозии с реагентом.

Ошибка измерения составляет не более 10%.

Данные представлены в таблице 1.

Из представленных в таблице 1 данных видно, что использование ГМДТФ с ее комплексонатами цинка и меди при мольном соотношении комплексонатов цинка и меди=0,75:0,25÷0,5:0,5 позволяет существенно уменьшить величину коррозии, т.е. эффективность ингибирования коррозии выше, чем ингибирование коррозии с использованием только цинксодержащих комплексонатов (пример №2). При этом использование ИОМС только с медным комплексонатом (пример №1) увеличивает коррозию (медь находится в ряду напряжений правее водорода). Полученные данные позволяют предположить, что присутствие комплексонатов меди препятствует развитию микроорганизмов, которые разрушают органофосфонат, в данном случае ГМДТФ, и тем самым снижают ее эффективность в композиции как ингибитора коррозии. При этом неожиданно высокое повышение коэффициента торможения (усиление ингибирующих свойств) проявляется при мольном соотношении комплексонатов цинка и меди=0,75:0,25÷0,5:0,5 (примеры №№4, 5, 6, 7). За пределами указанных соотношений коэффициент торможения ниже, чем у прототипа, т.е. ингибирующие свойства в отношении коррозии уменьшаются.

Примеры на предотвращение биообрастаний в сопоставлении с аналогом и прототипом.

«Химочищенную» воду (см. вышеописанные примеры на ингибирование коррозии) оборотного цикла Северского трубного завода заразили микроорганизмами. В воду вводили композиции согласно примерам №№10-14. Мольное соотношение, концентрация и условия экспозиции в соответствии с примером 1. По окончании экспозиции определение эффективности предотвращения биообрастаний определяли по стандартной методике: слой воды удаляют сифоном, в осадке визуально (под микроскопом) определяют количество живых микроорганизмов. Данные представлены в таблице 2.

Из представленных в таблице 2 данных видно, ГМДТФ и ее цинко-медные комплексонаты, взятые в заявленном соотношении (примеры №13 и 14) эффективно подавляют жизнедеятельность микроорганизмов и соответственно биообрастаний. Эффективность предлагаемого способа в заявленном интервале комплексонатов цинка и меди=0,75:0,25 ÷ 0,5:0,5 по предотвращению биообрастаний идентична способу-аналогу с использованием только медьсодержащих комплексонатов (пример №10) и существенно превышает эффективность способа - прототипа (пример №11).

Примеры на предотвращение солеотложений в сопоставлении с аналогом и прототипом

«Химочищенную» воду, состава и содержащую композиции ГМДТФ и ее цинко-медные комплексонаты в соответствии с вышеописанными примерами термостатировали в течение 14 дней при температуре 60°С. По окончании экспозиции на этой воде готовили модельные пересыщенные растворы сульфата кальция (С=7,5 г/л) путем смешения эквивалентных количеств сульфата натрия и хлористого кальция. Расчетная концентрация композиции (в пересчете на ГМДТФ) составляла 1,0 мг/л. Кристаллизацию изучали при перемешивании (Re=12500) и температуре 70°С (эффективность композиций оценивали по продолжительности индукционного периода). Данные представлены в таблице 3.

Из представленных в таблице 3 данных видно, что введение комплексонатов меди положительно сказывается на ингибирующих свойствах процесса кристаллизации сульфата кальция, а следовательно, и на подавлении образования солевых отложений. Неожиданно высокие результаты получены при заявленном мольном соотношении комплексонатов цинка и меди 0,75:0,25÷0,5:0,5 соответственно (примеры №18 и №19). Неожиданно высокие результаты трудно объяснить простым влиянием указанных комплексонатов на процесс солеотложения как таковой.

Из данных, представленных в таблицах №1-№3, видно, что при использовании системы ГМДТФ и ее металлсодержащих комплексонатов при мольном соотношении ГМДТФ: металлсодержащий комплексонат=3:1÷2:1, при этом в качестве металла используют цинк и медь при мольном соотношении комплексонат цинка: комплексонат меди = 0,75:0,25÷0,5:0,5 соответственно, в закрытых системах водоснабжения позволяет получить неожиданный результат - подавление развития микрофлоры при одновременном эффективном ингибировании коррозии и солеотложений. Комплексное решение задачи достигается, на наш взгляд, тем, что присутствие комплексоната меди при заявленном соотношении смеси комплексонатов цинка и меди препятствует деятельности микроорганизмов, а следовательно, не происходит разрушения ГМДТФ.

Использование заявляемого способа в системах водоснабжения за счет обработки предлагаемым реагентом позволит предотвратить биообрастание, солеотложения и коррозию, обеспечив длительную и бесперебойную работу систем закрытого водоснабжения и с требуемым качеством.

Таблица 1
Скорость коррозии
№ п/п Композиция Мольное соотношение ГМДТФ: комплексонат Мольное соотношение комплексонатов цинка и меди Коэффициент торможения
1 ИОМС: комплексонат меди (аналог) 2:1 0:1 0,5
2 ГМДТФ: комплексонат цинка (прототип) 2:1 1:0 3,4
3 ГМДТФ: комплексонат цинка (прототип) 3:1 1:0 2,9
4 ГМДТФ: комплексонат (по изобретению) 3:1 0,75:0,25 3,3
5 ГМДТФ: комплексонат (по изобретению) 3:1 0,5:0,5 3,8
6 ГМДТФ: комплексонат (по изобретению) 2:1 0,75:0,25 4,1
7 ГМДТФ: комплексонат (по изобретению) 2:1 0,5:0,5 4,5
8 ГМДТФ: комплексонат (контрольный) 3:1 0,25:0,75 2,5
9 ГМДТФ: комплексонат (контрольный) 2:1 0,25:0,75 2,9
Таблица 2
Количество живых микроорганизмов
№ п/п Композиция Мольное соотношение ГМДТФ: комплексонат Мольное соотношение комплексонатов цинка и меди Состояние микроорганизмов
10 ИОМС: комплексонат меди (аналог) 3:1 0:1 100% погибших
11 ГМДТФ: комплексонат цинка (прототип) 3:1 1:0 Все живы
12 ГМДТФ: комплексонат (контрольный) 3:1 0,25:0,75 100% погибших
13 ГМДТФ: комплексонат (по изобретению) 3:1 0,5:0,5 100% погибших
14 ГМДТФ: комплексонат (по изобретению) 3:1 0,75:0,25 100% погибших
Таблица 3
Кристаллизация сульфата кальция
№ п/п Композиция Мольное соотношение ГМДТФ: комплексонат Мольное соотношение комплексонатов цинка и меди Индукционный период, мин
15 ИОМС: комплексонат меди (аналог) 2:1 0:1 190
16 ГМДТФ: комплексонат цинка (прототип) 2:1 1:0 120
17 ГМДТФ: комплексонат (контрольный) 2:1 0,25:0,75 150
18 ГМДТФ: комплексонат (по изобретению) 2:1 0,5:0,5 250
19 ГМДТФ: комплексонат (по изобретению) 2:1 0,75:0,25 220

Способ предотвращения солеотложений, коррозии и биообрастаний в системах водоснабжения путем введения в обрабатываемую воду гексаметилендиаминтетраметиленфосфоновой кислоты и ее металлсодержащего комплексоната при мольном соотношении 3:1÷2:1, отличающийся тем, что в качестве металлсодержащего комплексоната используют смесь комплексоната цинка и комплексоната меди при их мольном соотношении 0,75:0,25÷0,5:0,5 соответственно.



 

Похожие патенты:
Изобретение относится к составам, применяемым для ингибирования солеотложений и коррозии металлов в системах водопользования, и непосредственно касается составов на основе фосфорсодержащих органических комплексообразующих соединений, которые могут быть использованы для стабилизационной обработки воды в системах водооборотного снабжения промышленных и энергетических предприятий и в коммунальном хозяйстве.

Изобретение относится к способам защиты металлов от коррозии в водных средах, а более конкретно к способам защиты стального оборудования от коррозии в нейтральных и щелочных водных средах фосфорсодержащими соединениями, и может найти применение, например, для защиты стальных частей технологического оборудования, котлов, котельно-вспомогательного и другого оборудования в промышленности, энергетике и коммунальном хозяйстве, а также для защиты от коррозии различных систем водоснабжения.

Изобретение относится к фосфорорганической химии, а именно к способу получения длинноцепных алкилфосфоновых кислот, обладающих антикоррозионной активностью, на основе -олефинов промышленной фракции C16 -C18 и С20-С 26.

Изобретение относится к области защиты металлов от коррозии в высокоминерализованных средах, содержащих сероводород и углекислый газ, с помощью ингибиторов и может быть использовано при добыче, подготовке, транспортировке и переработке нефти.

Изобретение относится к способам предотвращения минеральных отложений и коррозии и может быть использовано в водоподготовке систем отопления, охлаждения и оборотного водоснабжения.

Изобретение относится к способу ингибирования коррозии в водных системах. .

Изобретение относится к химии фосфорорганических соединений, а именно к азот- и фосфорсодержащим соединениям, которые могут найти применение в качестве средств защиты нефтепромыслового оборудования от сероводородной и микробиологической коррозии, в системах добычи, транспорта, хранения нефти, в заводняемых нефтяных пластах и при вторичных методах добычи нефти.

Изобретение относится к области химической технологии и может быть использовано в системах оборотного водоснабжения, на тепловых станциях и нефтехимических установках.
Изобретение относится к составам ингибиторов для предотвращения карбонатных, сульфатных, железоокисных отложений, а также для разрушения этих отложений, в частности в оборотных циклах систем охлаждения, мокрой очистки газов, теплоснабжения и гидротранспорта.

Изобретение относится к технике очистки сточных вод и может быть использовано для перекачки и очистки сточных вод. .

Изобретение относится к эксплуатации систем оборотного водоснабжения и может быть использовано для защиты оборудования этих систем от коррозии и солеотложения (накипеобразования).

Изобретение относится к биоцидам на основе фосфониевых соединений, внедренных в матричную основу. .

Изобретение относится к способам предотвращения минеральных отложений и коррозии и может быть использовано в водоподготовке систем отопления, охлаждения и оборотного водоснабжения.
Изобретение относится к области водоподготовки, а именно к реагентам и композициям, используемым для предотвращения солеотложений и коррозии в промышленных системах водооборота.

Изобретение относится к снижению отложений сульфида железа в трубах. .
Изобретение относится к синергическим биоцидным композициям и к композициям, растворяющим сульфиды металлов. .

Изобретение относится к области нефтедобычи, в частности к составам, предназначенным для предотвращения осаждения неорганических солей в скважинах и на скважинном оборудовании, системе сбора и транспорта нефти, а также в нефтяных пластах, разрабатываемых с использованием систем заводнения.
Изобретение относится к составам для предотвращения неорганических отложений, обладающим пониженным коррозионным воздействием на металл оборудования и низким значением кинематической вязкости при минусовых температурах, и может быть использовано в нефтяной и теплоэнергетической промышленности для предотвращения солеотложений в водных системах
Наверх