Способ получения фракции из клеток e.coli, обладающей протеолитической активностью



Способ получения фракции из клеток e.coli, обладающей протеолитической активностью
Способ получения фракции из клеток e.coli, обладающей протеолитической активностью
Способ получения фракции из клеток e.coli, обладающей протеолитической активностью
Способ получения фракции из клеток e.coli, обладающей протеолитической активностью
Способ получения фракции из клеток e.coli, обладающей протеолитической активностью
Способ получения фракции из клеток e.coli, обладающей протеолитической активностью
Способ получения фракции из клеток e.coli, обладающей протеолитической активностью

 


Владельцы патента RU 2410428:

Учреждение Российской академии наук Институт биологии Уфимского научного центра РАН (ИБ УНЦ РАН) (RU)

Изобретение относится к области биотехнологии, конкретно к получению протеолитических фракций из прокариотических клеток, и может быть использовано при анализе молекулярно-генетических механизмов формирования структуры клетки прокариот и роли белковых компонентов в их организации, что необходимо для получения дополнительной информации в разработках и построении компьютерных моделей организации генных и эпигенных сетей управления. Клетки Escherichia coli консервируют в присутствии забуференного 80-90% глицерина, затем обрабатывают 3% тритоном Х-100, с целью снятия клеточной оболочки, далее полученные цитоплазматические белки экстрагируют возрастающими концентрациями солей: 0,14 М, 0,35 М; 2 М NaCl, 6 М гуанидин гидрохлоридом с 0,1% β-меркаптоэтанолом, проводят аффинную хроматографию на сефарозе 4В с иммобилизованным ингибитором трипсина и оценивают протеолитическую активность. Данное изобретение позволяет получить фракцию из клеток прокариот. 3 табл., 4 ил.

 

Изобретение относится к биохимии и молекулярной биологии прокариотической клетки и может быть применено к анализу молекулярно-генетических механизмов формирования структуры клетки прокариот и роли белковых компонентов в их организации, что необходимо для получения дополнительной информации в разработках и построении компьютерных моделей организации генных и эпигенных сетей управления.

Известен способ получения ядерных фракций, обладающих протеиназной и ингибирующей активностью [1], в котором был описан способ получения фракций из клеточных ядер соматических клеток растений. Недостаток этого метода заключается в том, что получение надмолекулярно-генетических структур осуществляется из клеточных ядер растений, а не из безъядерной прокариотической клетки, оболочка которой не может быть снята 0,5% тритоном Х-100.

Вышеуказанный способ получения ядерных фракций, обладающих протеиназной и ингибирующей активностью был принят за основу, в котором первоначально производят консервацию растительных тканей в забуференном 80-90% глицерине с последующей трехступенчатой гомогенизацией в забуференной 20% глицериновой среде, низкоскоростное центрифугирование растительного гомогената и очистку ядер через пятислойный (50, 60, 70, 80, 90 мас./объем) забуференный глицериновый градиент с последующей очисткой ядер буфером, содержащим 0,5% тритон Х-100 с последующей экстракцией ядерных фракций возрастающими концентрациями 0,14 М, 0,35 М, 2 М хлористого натрия, 6 М гуанидин гидрохлорида с 0,1% β-меркаптоэтанолом и 0,5 н. раствором гидроксида натрия при сопутствующей аффинной хроматографии вышеперечисленных ядерных фракций на сефарозе 4В с иммобилизованным трипсином либо ингибитором трипсина.

Недостатком этого способа является то, что трехступенчатая гомогенизация неприемлема для клеток прокариот, т.к. культура уже состоит из отдельных клеток необъединенных в ткань, 0,5% тритон Х-100 не снимает клеточную оболочку прокариотической клетки, экстракция фракций 0,5 н. гидроксидом натрия невозможна, т.к. клеточный остаток целиком растворяется в 6 М гуанидин гидрохлориде с 0,1% β-меркаптоэтанолом.

Целью изобретения является повышение выхода и активности целевого продукта.

Указанная цель достигается тем, что в способе выделения надмолекулярно-генетических структур из клеток прокариот из консервированных в 80-90% глицерине клеток, 3% тритоном Х-100 снимают клеточную оболочку с последующей экстракцией ядерных фракций возрастающими концентрациями 0,14 М, 0,35 М, 2 М хлористого натрия и 6 М гуанидин гидрохлорида с 0,1% β-меркаптоэтанолом при сопутствующей аффинной хроматографии вышеперечисленных ядерных фракций на сефарозе 4В с иммобилизованным трипсином либо ингибитором трипсина.

Изобретение иллюстрируется следующим примером.

Пример. Опыты проводили на протяжении жизненного цикла клеток штамма Е. coli JC-158 (Hfr PO1, thil, serA6, lacI22, relA1) [5], предоставленного Ступак И.В. и Ступак Е.Э., выращивание культуры проводилось Тропыниной Т.С. (Институт биологии УНЦ РАН, лаборатория математической и молекулярной генетики) и штамма E.coli 5а, предоставленного Маркушевой Т.В. (Институт биологии УНЦ РАН, группа генетики микроорганизмов). В работе для выращивания использовалась богатая питательная среда LB (Луриа-Бертани). В 1 литре дистиллированной воды растворялись при помешивании (на магнитной мешалке типа MM 2A): бакто-триптон (Difco, США) - 10 г; дрожжевой экстракт (Difco, США) - 5 г; NaCl - 10 г, pH до 7,5. Среда стерилизовалась при 120-123°С, при давлении пара 1 атм в стандартном автоклаве.

Бактериальные клетки, использованные в эксперименте, первоначально находились в агаризованных столбиках LB (на 1 литр среды 1,5 г агар-агара, Difco, США) и хранились при температуре 4°С. При такой температуре и практически полном отсутствии кислорода происходит замедление всех физиологических процессов в клетках. Для того чтобы перевести клетки в "нормальное физиологическое состояние", а именно аэробное дыхание, бактериальную культуру из агаризованного столбика в стерильных условиях переносили с помощью бактериологической петли в жидкую среду LB в объеме 5 мл, находящуюся в химической пробирке объемом 20 мл, закрывали ватно-марлевой пробкой и инкубировали при 37°С, 160 об/мин на лабораторном термостатируемом встряхивателе (П5.10-Э5960) в течение 16 часов. Отдельно выросшая хорошо сформировавшаяся колония бактерий с агаризованной среды LB пересевалась с помощью бактериологической петли в жидкую среду LB в объеме 5 мл и инкубировалась при 37°С, 160 об/мин 7 часов. Затем 100 мкл подросшей культуры клеток пересевалась в свежую жидкую среду LB в объеме 5 мл и инкубировалась при 37°С, 160 об/мин 16 часов. 2 мл культуры клеток вносилось в кювету с рабочей длиной 5,075 мм, и измерялась оптическая плотность на колориметре фотоэлектрическом концентрационном (КФК-2) при длине волны 590 нм. Это значение составляло 1,0. В свежую жидкую среду LB в объеме 120 мл в 500 мл колбе высевалось 120 мкл 16-часовой культуры, и проводилось инкубирование при 37°С, 160 об/мин в течение 7 часов 10 минут.

Первая проба была взята через 50 минут после начала инкубирования. Оптическая плотность первой пробы составляла 0,005. Для дальнейшего анализа отбирались образцы в объеме 1,5 мл. Клетки осаждались центрифугированием при 12000 об/мин на центрифуге Эппендорф в течение 5 мин. Надосадочная жидкость удалялась, осадки подсушивались. К осадкам добавлялось по 50 мкл среды следующего состава: 80-90% глицерин на 0,01 М трис-HCl буфере pH 6,8 с добавлением 0,005 М MgCl2; 0,025 М KCl; 0,003 М CaCl2; 0,005 М NaCl для консервации клеток при минус 25°С. Последующие пробы отбирались через каждые 20 минут в течение 7 часов 10 минут.

Далее осадки клеток промывали 3% тритоном Х-100 в среде следующего состава: 0,02М триэтаноламин (ТЭА)·HCl pH 6,8; 0,005 М MgCl2; 0,025 М KCl; 0,003 М CaCl2; 0,005 М NaCl pH 6,8; встряхивали в течение 30 мин на микрошейкере (Micro-shaker type 326 m, Польша), с последующим центрифугированием при 4000 об/мин (К-23, ГДР) в течение 20 мин для снятия клеточной оболочки, после чего осадок дважды промывали в среде следующего состава: 0,005 М MgCl2; 0,025 М KCl; 0,003 М CaCl2; 0,005 М NaCl; 0,01 М трис-HCl pH 6,8 с последующим центрифугированием при вышеуказанных условиях. Более низкие концентрации тритона Х-100 не снимали оболочки клеток E.coli.

Цитоплазматические белки экстрагировали 0,14 М NaCl, 0,01 М трис-HCl pH 6,8 буфером. Фракцию непрочно связанную с клеточным остатком выделяли путем экстракции осадка 0,35 М NaCl, 0,01 М трис-HCl pH 6,8 буфером. Далее осадок фракционировали суспендированием в трис-HCl буфере с 2 М NaCl. В осадке оставалась фракция, содержащая клеточный остаток с клеточной оболочкой. Последующую экстракцию проводили 6 М гуанидин гидрохлоридом с 0,1% β-меркаптоэтанолом на трис-HCl буфере. В вышеуказанном буфере осадок растворялся полностью, поэтому экстракцию 0,5 н. NaOH не проводили. Ядерные фракции хранили при - 196°C в азоте.

Количество белка определяли по связыванию белка с кумасси ярко-синим G (Loba, Австрия) [1, 3]. Метод использовался в случае микронаноколичественного определения белка.

Аффинную хроматографию проводили на колонках (0,5×4 см) либо с иммобилизованным трипсином («СПОФА», ЧССР), либо ингибитором трипсина («Reanal», Венгрия), ковалентно присоединенных к CNBr-активированной агарозе (Институт химии АН Эстонии) [1].

Протеолитическую активность протеаз определяли по расщеплению низкомолекулярного белка протамина («Calbiochem», США) [1]. Количество освободившегося аргинина рассчитывали, пользуясь калибровочным графиком. В качестве стандарта использовали D,L-аргинин («Reanal», Венгрия). Активность протеаз и их ингибиторов выражали в нмоль аргинина на 1 мг/с.

Анализ полноты выделения клеточных фракций (табл.1) и фракций, полученных после аффинной хроматографии (табл.3), показал, что все фракции представляют собой не чистый белок, а комплексы нуклеиновых кислот, белка и гексоз. Для определения ДНК и РНК использовали метод А.С.Спирина [4]. Для определения содержания гексоз использовали метод [2].

На фиг.1 представлена кривая роста штамма Е. coli JC-158. На оси ординат показана оптическая плотность периодической культуры. На оси абсцисс показан возраст периодической культуры в мин, измеряемой в течение 7 часов 10 минут в растущей культуре клеток.

На фиг.2 представлена полнота выделения белкового компонента в надмолекулярно-генетических структурах клеток Е. coli JC-158. На оси ординат показан процент выхода белка, на оси абсцисс - возраст культуры.

Эффективность последовательной ступенчатой экстракции протеаз и ингибиторов трипсина из клеток Е. coli JC-158 показана на фиг.3. На оси ординат (фиг.3) показана активность протеаз (1) и ингибиторов трипсина (2), выраженная в нмоль аргинина на 1 мг белка/с. На оси абсцисс указан возраст культуры в мин от 50 до 430 мин. Использованы следующие обозначения: Цп - цитоплазма; Фр-1 - фракция непрочно связанная с клеточным остатком (35 М NaCl); Фр-II - фракция прочно связанная с клеточным остатком (2 М NaCl); Ко - клеточный остаток с клеточной оболочкой;

На фиг.4 показана последующая идентификация фракций, полученных из клеток Е. coli JC-158, на колонках либо с иммобилизованным ингибитором трипсина, либо с трипсином. На оси ординат показано содержание протеолитических и ингибиторных надмолекулярно-генетических комплексов в расчете на 1 клетку (пг). На оси абсцисс указан возраст культуры в мин от 50 до 430 мин. Использованы следующие обозначения: 1 - протеолитический комплекс; 2 - ингибиторный комплекс.

Исследование фракций, обладающих протеолитической и ингибиторной активностью включает предварительную консервацию клеток в глицериновой среде, снятие клеточной оболочки и выделение из них клеточных фракций возрастающими концентрациями солей. Табл.1 показывает, что структура клеток (штамма Е. coli 5а) не нарушена и иллюстрирует полноту выделения клеточных фракций. Табл.2 и 3 иллюстрируют компонентный состав аффинно-выделенных протеолитических (табл.2) и ингибиторных (табл.3) комплексов в течение роста клеток штамма Е. coli 5а в периодической культуре.

Предложенный способ рекомендуется в исследовании молекулярно-генетических механизмов формирования прокариотической структуры клетки и роли белковых компонентов в их организации, в частности в исследованиях Arg-X протеиназ, участвующих в ремоделировании хроматина, а также для построения компьютерных моделей организации прокариот.

Источники информации

1. Иванова Э.А., Вафина Г.Х. Способ получения ядерных фракций, обладающих протеиназной и ингибирующей активностью. Авторское свидетельство 1733471 // БИ 1992, Т. 18, С.96.

2. Иванова Э.А., Вафина Г.Х., Ремеева Р.Г. Способ определения углеводных компонентов в клеточных ядрах. Патент №2108571 // БИ №10, 10.04.98.

3. Скоупс Р. Методы очистки белков. М.: Мир, 1985, С.342.

4. Спирин А.С. Спектрофотометрическое определение суммарного количества нуклеиновых кислот // Биохимия, 1968, Т.23, 35, С.656.

5. Myrphy D.B., Pembroke J.T. Transfer of the IncJ plasmid R391 to recombination deficient E.coli K12: evidence that R391 behaves as a conjugal transposon // FEMS Microbiology Letters, 1995, V.134, P.153-158.

Способ получения фракции из клеток Escherichia coli, обладающей протеолитической активностью, включающий консервацию клеток в присутствии забуференного 80-90% глицерина с последующим снятием клеточных оболочек 3% тритоном Х-100, экстракцию возрастающими концентрациями солей: 0,14 М, 0,35 М; 2 М NaCl, 6 М гуанидин гидрохлоридом с 0,1% β-меркаптоэтанолом, аффинную хроматографию на сефарозе 4 В с иммобилизованным ингибитором трипсина и последующей оценкой в элюатах протеолитической активности.



 

Похожие патенты:

Изобретение относится к биотехнологии и может быть использовано для получения внутреннего стандарта в аналитике, в исследованиях обмена веществ при проведении опытов по откармливанию животных, в метаболических исследованиях, при изучении цикла обмена веществ, путей и/или периодов распада, а также интеркаляций.

Изобретение относится к биотехнологии. .
Изобретение относится к микробиологической промышленности и касается питательной среды для производства копропорфирина III. .

Изобретение относится к микробиологической промышленности, микробиологии и биотехнологии, а именно к производству физиологически активных соединений, и касается получения белка, бактериородопсина путем микробиологического синтеза.

Изобретение относится к биотехнологии. .
Изобретение относится к кормопроизводству. .

Изобретение относится к синергическому эффекту комбинации фитаз в отношении гидролиза фитиновой кислоты. .

Изобретение относится к биотехнологии и представляет собой липолитический фермента, который получен из одного из Streptomyces. .

Изобретение относится к измерениям или испытаниям, использующим фермент холинэстеразу, конкретно к измерению концентрации веществ антихолинэстеразного действия (АХД), например фторангидрида O-изопропилового эфира метилфосфоновой кислоты (ИМФК), путем определения остаточной ферментативной активности.

Изобретение относится к биотехнологии и может найти применение в производстве медицинских препаратов - рибонуклеазы панкреатической, дезоксирибонуклеазы панкреатической, трипсина, а также холестеролэстеразы.

Изобретение относится к биотехнологии, в частности к кристаллическим структурам фосфодиэстеразы 5 (PDE5) и комплексов "РDЕ5/лиганд PDE5" и к их применениям для идентификации лигандов PDE5, включая соединения-ингибиторы PDE5.

Изобретение относится к области биотехнологии и может быть использовано в медицине и фармацевтике. .

Изобретение относится к области генной инженерии и биотехнологии и может быть использовано в медицине. .

Изобретение относится к биотехнологии и может быть использовано в кормопроизводстве для приготовления кормовой добавки и корма для сельскохозяйственных животных.

Изобретение относится к биотехнологии, а именно к индуцируемым теплом промоторам, наборам и способам получения одного или большего количества белков с использованием индуцируемого теплом промотора.

Изобретение относится к области медицины и биотехнологии и касается фермента хондроитиназы, применяемой в химико-фармацевтической промышленности, высокоочищенной хондроитиназы и способа получения фермента и фармацевтических композиций, содержащих фермент.
Наверх