Эскалатор (варианты)

Авторы патента:


Эскалатор (варианты)
Эскалатор (варианты)
Эскалатор (варианты)
Эскалатор (варианты)

 


Владельцы патента RU 2412896:

КЕТТЕН ВУЛЬФ БЕТРИБС-ГМБХ (DE)

Эскалатор содержит множество ступеней или поддонов, одну цепь (1), предназначенную для приведения в действие ступеней или поддонов, по меньшей мере, одно цепное зубчатое колесо (2, 3), по которому частично проходит цепь (1), причем цепь (1) при сходе с цепного зубчатого колеса (2, 3) образует верхнюю ветвь (5) и нижнюю ветвь (6), а также средства для компенсации эффекта многогранника при движении, по меньшей мере, одного цепного зубчатого колеса (2, 3), причем фактическое плечо (16, 17) силы цепи (1), по меньшей мере, на одном цепном зубчатом колесе (2, 3) в верхней ветви (5), в основном, равно фактическому плечу (16′, 17′) силы цепи (1), по меньшей мере, на одном цепном зубчатом колесе (2, 3) в нижней ветви (6). Согласно первому варианту выполнения эскалатора при минимальном фактическом плече (16, 16′) силы на первом цепном зубчатом колесе (2) в той же ветви (5, 6) фактическое плечо (17, 17′) силы на втором цепном зубчатом колесе (3) не является минимальным, предпочтительно отличается от максимального значения максимум на 20% разности между максимальным и минимальным значениями, в частности является максимальным. Согласно второму варианту выполнения эскалатора вместо второго зубчатого колеса используется направляющая дуга. Изобретения обеспечивают повышение плавности движения цепи. 2 н. и 14 з.п. ф-лы, 4 ил.

 

Настоящее изобретение относится к эскалатору в соответствии с ограничительной частью пункта 1 формулы изобретения или в соответствии с ограничительной частью пункта 2 формулы изобретения.

Термин «эскалатор» включает как эскалаторы с лестничными ступенями, которые используются, к примеру, в торговых центрах, так и пассажирские конвейеры с поддонами, которые используются, к примеру, в аэропортах.

Для того чтобы, прежде всего, дать определение некоторым терминам, на фиг.1 схематично изображена шарнирная цепь G и частично охваченное этой цепью цепное зубчатое колесо R. Шарнирная цепь G содержит шарнирно соединенные друг с другом звенья K цепи, которые шарнирно соединены друг с другом в месте Р поворота. Представленное в качестве примера цепное зубчатое колесо R имеет 8 зубьев Z, между которыми располагаются впадины, в которые могут входить в зацепление места Р поворота. Угловой шаг τ между двумя зубьями или между двумя впадинами в представленном примере равен 45°.

Далее на фиг.1 на нижней стороне цепного зубчатого колеса отмечен угол ϕ вхождения, который, к примеру, может быть образован посредством отклоняющей шарнирную цепь G направляющей. Угол ϕ вхождения измеряется между фактическим направлением выхода шарнирной цепи G и перпендикуляром S, опущенным на соединительную линию между точкой А отрыва шарнирной цепи G от цепного зубчатого колеса R и осью D вращения цепного зубчатого колеса R. Угол ϕ вхождения в представленном примере приблизительно равен 11°.

На фиг.1 отмечен фактический угол υ обхвата в данный момент времени, который соответствует оборачивающемуся углу между двумя точками А отрыва шарнирной цепи G от цепного зубчатого колеса R и в представленном случае равен 180°. Когда звено K цепи снимается с цепного зубчатого колеса R, фактический угол υ обхвата в данный момент времени скачкообразно уменьшается, так как при различном угле ϕ вхождения вверху и внизу, к примеру, на верхней стороне звено K цепи снимается, а в то же время на нижней стороне следующее звено K цепи, однако, еще не прилегает к колесу. Поэтому, далее исходят из среднего угла υ обхвата, который больше или равен минимальному углу обхвата и меньше или равен максимальному углу обхвата.

Далее на верхней стороне цепного зубчатого колеса R отмечено фактическое плечо Heff силы, которое соответствует перпендикуляру между линией W действия силы, в частности, тягового усилия шарнирной цепи G и осью D вращения цепного зубчатого колеса R. Как и фактический угол υ обхвата в данный момент времени фактическое плечо Heff силы также изменяется во время движения шарнирной цепи, в силу исполнения шарнирной цепи в форме звеньев, в частности в силу многогранного (по форме многоугольника) прилегания цепи к цепному зубчатому колесу R. На нижней стороне цепного зубчатого колеса R фактическое плечо Heff силы немного меньше, так как ввиду некоторого наклона линии W действия силы шарнирной цепи G фактическое плечо Heff силы не проходит более через точку А отрыва.

Как правило, ступени эскалаторов или поддоны пассажирских конвейеров приводятся в действие, в частности, с обеих сторон посредством тяговых цепей, выполненных в виде так называемых цепей для ступеней или цепей для поддонов, а также закреплены на них.

Обычно тяговые цепи имеют три или четыре шага и, таким образом, также три или четыре шарнира на ступень. Используемые цепные зубчатые колеса имеют примерно от 16 до 25 зубьев. Это сравнительно большое количество выбирается для того, чтобы минимизировать так называемый эффект многогранника.

Эффект многогранника возникает вследствие изменяющегося фактического плеча Heff силы (см. фиг.1). Цепные зубчатые колеса обычно приводятся в действие с постоянной угловой скоростью. Вследствие изменяющихся фактических плеч силы изменяется скорость цепи для ступеней, вследствие постоянного ускорения и торможения подвижных масс (цепей, осей, ступеней) возникают силы инерции, которые в виде возмущающих усилий или вращающих моментов оказывают воздействие на цепи для ступеней/цепи для поддонов или на приводной механизм и частично приводят к сокращению срока службы, или представляют собой порядок величин, которые необходимо принимать во внимание при конструировании, в частности, компонентов привода. Кроме того, подвижные части эскалатора совместно с обрамляющей металлоконструкцией представляют собой колебательную пружинно-массовую систему. В частности, цепи здесь нужно рассматривать как пружины, а ступени, оси (в случае их наличия), ролики, транспортируемых пассажиров (на ступенях или на поддонах) и снова цепи нужно рассматривать как массы. Эта пружинно-массовая система, в зависимости от параметров, может иметь очень неблагоприятные рабочие точки в зависимости от количества зубьев цепных зубчатых колес, скорости движения, а также от нагрузки.

На практике такому положению вещей противостоят обычно посредством уменьшения шага цепи и посредством увеличения количества зубьев. С уменьшением шага цепи и с увеличением количества зубьев эффект многогранника уменьшается до тех пор, пока в конце концов не достигается значение, при котором эффект многогранника на практике становится настолько мал, то есть движение цепей/ступеней/поддонов становится настолько равномерным, что эффект многогранника практически не является помехой, однако все еще имеет место.

Также были установлены направляющие в зоне цепных зубчатых колес, которые способствуют тангенциальному вхождению цепи на цепные зубчатые колеса. Первичной целью данного мероприятия является снижение шума при вхождении цепи на цепные зубчатые колеса. Эффект многогранника при этом также уменьшается, однако не компенсируется.

Традиционная конструкция с относительно небольшим шагом цепи и относительно большим количеством зубьев цепных зубчатых колес имеет, однако, решающие недостатки.

Прежде всего, следует упомянуть высокие затраты на цепи для ступеней/поддонов. Чем больше шагов имеет такая цепь, тем больше шарниров в расчете на ступень или на метр и тем выше ваши затраты. Кроме того, тогда мы имеем большее количество мест на ступень/поддон, подверженных износу. По прошествии определенного промежутка времени эксплуатации эскалатора как можно более длительное соблюдение максимально допустимого зазора между ступенями/поддонами является очень важным критерием.

Обусловленные наличием большого количества зубьев цепные зубчатые колеса имеют относительно большие диаметры и требуют много конструктивного пространства, в частности, для приводной станции. Вследствие этого в зданиях изымаются недорогие помещения. Обусловленные большими диаметрами необходимы большие приводные моменты, что влечет за собой соответствующие расходы на приводные механизмы.

Эскалатор ранее описанного типа известен из европейской патентной заявки ЕР 1344740 А1. Известный эскалатор имеет приводимое в действие с компенсацией эффекта многогранника через верхнюю ветвь цепное зубчатое колесо, по которому частично проходит шарнирная цепь. Цепное зубчатое колесо имеет нечетное количество зубьев. По нечетному количеству зубьев нижняя ветвь проходит без компенсации эффекта многогранника, наоборот, крайне неравномерно. Так как нижняя ветвь также нагружена массами, к примеру массами цепей, роликов, осей и ступеней или поддонов, то вследствие данной неравномерности возникают усилия, которые передаются на ступени или поддоны в верхней ветви. Такого рода эскалатор в сильно нагруженном состоянии, в силу большого соотношения массы в верхней ветви и массы в нижней ветви, может передвигаться сравнительно плавно. В ненагруженном состоянии или при наличии на нем лишь нескольких пассажиров и в верхней ветви он будет передвигаться очень неравномерно.

Задачей, лежащей в основе предложенного на рассмотрение изобретения, является создание устройства ранее описанного типа, которое и при сравнительно небольшом количестве зубьев, по меньшей мере, одного цепного зубчатого колеса передвигается сравнительно плавно.

Поставленная задача решена посредством экскаватора, содержащего множество ступеней или поддонов; по меньшей мере, одну цепь, предназначенную для приведения в действие ступеней или поддонов; первое цепное зубчатое колесо, по которому частично проходит цепь, причем цепь при сходе с первого цепного зубчатого колеса образует верхнюю ветвь и нижнюю ветвь; второе цепное зубчатое колесо, по которому частично проходит цепь, а также средства для компенсации эффекта многогранника при движении цепных зубчатых колес, причем первое цепное зубчатое колесо и второе цепное зубчатое колесо выполнены с возможностью приведения в движение относительно друг друга, причем при минимальном фактическом плече силы на первом цепном зубчатом колесе в той же ветви фактическое плечо силы на втором цепном зубчатом колесе не является минимальным, предпочтительно отличается максимум на 20% разности между максимальным и минимальным значением от максимального значения, в частности, является максимальным.

Предпочтительным является то, что фактическое плечо силы цепи на цепных зубчатых колесах в верхней ветви, в основном, равно фактическому плечу силы цепи на цепных зубчатых колесах в нижней ветви. При рассчитанной, к примеру, на верхнюю ветвь компенсации эффекта многогранника это способствует тому, что с постоянной скоростью движется не только верхняя ветвь, но и нижняя ветвь. Решение в соответствии с изобретением позволяет использовать цепи для ступеней или поддонов с существенно увеличенным шагом, а именно, к примеру, с шагом цепи, равным половине шага ступени, или с шагом цепи, равным шагу ступени, и/или уменьшать необходимое конструктивное пространство.

Эскалатор содержит, по меньшей мере, одну направляющую, которая выполнена с возможностью воздействия на первое и/или второе цепное зубчатое колесо для изменения угла вхождения цепи, причем, по меньшей мере, одна направляющая расположена таким образом, что угол вхождения при минимальном фактическом плече силы меньше, чем при максимальном фактическом плече силы. Такого рода расположение направляющей способствует тому, что при работающей машине колебательное движение направляющей станции приближается к нулю, что абсолютно позитивно отражается на плавности хода. Кроме того, при таком расположении, по меньшей мере, одной направляющей ходовые ролики нагружены лишь очень незначительно. Таким образом, имеется возможность использования относительно экономичных ходовых роликов.

Первое цепное зубчатое колесо, предпочтительно, выполнено в виде приводного цепного зубчатого колеса, а второе цепное зубчатое колесо выполнено в виде направляющего колеса.

Предпочтительным является то, что количество зубьев первого и/или второго цепного зубчатого колеса является четным. Однако количество зубьев первого цепного зубчатого колеса меньше или равно 12, в частности, 4 или 6 и количество зубьев второго цепного зубчатого колеса меньше или равно 12, в частности, 4 или 6.

Предпочтительно, количество зубьев первого цепного зубчатого колеса не равно, или почти равно, или равно количеству зубьев второго цепного зубчатого колеса.

Средний угол обхвата первого и/или второго цепного зубчатого колеса отличается от целого кратного углового шага максимально на ±20% углового шага.

Предпочтительно, средний угол обхвата первого и/или второго цепного зубчатого колеса является целым кратным углового шага.

Угловое положение первого цепного зубчатого колеса отличается от углового положения второго цепного зубчатого колеса, по меньшей мере, на ±30% углового шага, предпочтительно, по меньшей мере, на ±40% углового шага, в частности, на половину углового шага. За счет противофазности обоих цепных зубчатых колес уменьшается возвратно-поступательное движение выполненного, к примеру, как направляющее колесо второго цепного зубчатого колеса.

Поставленная задача решена также посредством эскалатора, содержащего множество ступеней или поддонов; по меньшей мере, одну цепь, предназначенную для приведения в действие ступеней или поддонов; первое цепное зубчатое колесо, по которому частично проходит цепь, причем цепь при сходе с первого цепного зубчатого колеса образует верхнюю ветвь и нижнюю ветвь, направляющую дугу, по которой частично проходит цепь, а также средства для компенсации эффекта многогранника при движении цепного зубчатого колеса, причем первое цепное зубчатое колесо и направляющая дуга выполнены с возможностью приведения в движение относительно друг друга, причем при минимальном фактическом плече силы на первом цепном зубчатом колесе в той же ветви фактическое плечо силы на направляющей дуге не является минимальным, предпочтительно отличается максимум на 20% разности между максимальным и минимальным значением от максимального значения, в частности является максимальным.

Средний угол обхвата направляющей дуги отличается от целого кратного углового шага максимально на ±20% углового шага.

Предпочтительным является то, что средний угол обхвата направляющей дуги является целым кратным углового шага.

Другие признаки и преимущества предложенного на рассмотрение изобретения становятся очевидны на основании последующего описания предпочтительных примеров выполнения со ссылкой на приложенные чертежи, на которых показано следующее:

фиг.1 - схематично цепное зубчатое колесо и шарнирная цепь для пояснения используемых терминов;

фиг.2 - схематичный вид сбоку эскалатора в соответствии с изобретением с направляющим цепным зубчатым колесом;

фиг.3 - схематичный вид сбоку эскалатора в соответствии с изобретением с направляющей дугой вместо направляющего цепного зубчатого колеса;

фиг.4 - схематичный увеличенный вид нескольких существенных для функционирования эскалатора в соответствии с фиг.2 компонентов.

Представленный на фиг.2 эскалатор содержит выполненную в виде шарнирной цепи цепь 1, которая оборачивается вокруг первого приводного цепного зубчатого колеса 2 и вокруг второго служащего в качестве направляющего колеса цепного зубчатого колеса 3. Каждое из цепных зубчатых колес 2, 3 имеет шесть зубьев, обозначенных лишь схематично. С цепью 1 соединены не изображенные на чертеже ступени или поддоны эскалатора. На фиг.2 и на фиг.3 обозначен лишь один вращающийся поручень 4 эскалатора, за который пользователь может держаться во время движения эскалатора. Цепь 1 образует между цепными зубчатыми колесами 2, 3, соответственно, вверху на фиг.2-фиг.4 верхнюю ветвь 5 и, соответственно, внизу на фиг.2-фиг.4 нижнюю ветвь 6.

Первое цепное зубчатое колесо 2 приводится в движение посредством приводного двигателя 7 через приводную цепь 8 без воздействия эффекта многогранника или с компенсацией эффекта многогранника. К примеру, в представленном варианте выполнения изобретения это может быть достигнуто посредством входящего в зацепление с приводной цепью 8 некруглого колеса 9. Другие возможности приведения в движение с компенсацией эффекта многогранника известны из документа WO 03/036129 А1. Приведение в движение с компенсацией эффекта многогранника позволяет приводить в движение первое цепное зубчатое колесо 2 не с постоянной угловой скоростью, а таким образом, что приводная цепь 1 движется с постоянной скоростью или со скоростью, близкой к постоянной.

Поручень 4 приводится в движение посредством приводного двигателя 7, причем поручень 4 приводится в движение с постоянной угловой скоростью. Второе цепное зубчатое колесо 3 удерживается посредством подвижного крепления 10 с возможностью смещения.

На фиг.4 цепь 1 представлена укороченной. Фиг.4 демонстрирует, что второе цепное зубчатое колесо 3 по отношению к первому цепному зубчатому колесу 2 смещено относительно своего углового положения. К примеру, проходящая через точку 11 соприкосновения цепи 1 радиальная линия 12 образует с горизонталью 13 на фиг.4 на первом цепном зубчатом колесе 2 угол α, который примерно равен 60°. Напротив, проходящая через соответствующую точку 14 соприкосновения цепи 1 радиальная линия 15 образует с горизонталью 13 на фиг.4 на втором цепном зубчатом колесе 3 угол β, который примерно равен 30°. Угловые положения цепных зубчатых колес 2, 3 различаются, таким образом, на 30°, что соответствует половине углового шага имеющих шесть зубьев цепных зубчатых колес 2, 3, так как угловой шаг равен 360°, поделенным на количество зубьев.

Это различие в угловых положениях цепных зубчатых колес 2, 3 способствует тому, что именно тогда, когда на первом цепном зубчатом колесе 2 цепь 1 воздействует с минимальным фактическим плечом 16, 16′ силы, цепь 1 на втором цепном зубчатом колесе 3 воздействует с максимальным фактическим плечом 17, 17′ силы (см. фиг.4). И наоборот, если на первом цепном зубчатом колесе 2 цепь 1 воздействует с максимальным фактическим плечом силы, то цепь 1 на втором цепном зубчатом колесе 3 воздействует с минимальным фактическим плечом силы (не изображено).

На фиг.4 показано, что на первом цепном зубчатом колесе 2 фактическое плечо 16 силы в верхней ветви 5 равно фактическому плечу 16′ силы в нижней ветви 6. На втором цепном зубчатом колесе 3 фактическое плечо 17 силы в верхней ветви 5 равно фактическому плечу 17′ силы в нижней ветви 6.

На фиг.4 изображены направляющие 18, 19, которые могут задавать угол ϕ1, ϕ2 вхождения цепи 1 на цепные зубчатые колеса. При этом направляющая 18 расположена на фиг.4 сверху на таком расстоянии, а соответственно, направляющая 19 расположена на фиг.4 снизу на таком расстоянии, что угол ϕ1 вхождения при минимальном фактическом плече 16, 16′ силы (см. первое цепное зубчатое колесо 2 на фиг.4) явно меньше, чем угол ϕ2 вхождения при максимальном фактическом плече 17, 17′ силы (см. второе цепное зубчатое колесо 3 на фиг.4).

В варианте выполнения изобретения, представленном на фиг.3, вместо второго цепного зубчатого колеса 3 предусмотрена направляющая дуга 20. У этой направляющей дуги 20 радиус выбран таким образом, что и на направляющей дуге 20 фактическое плечо силы (не изображено) в верхней ветви 5 равно фактическому плечу силы в нижней ветви 6. Далее и в вариантах выполнения изобретения согласно фиг.3 направляющие 18, 19 цепи 1 могут таким образом подводиться к направляющей дуге, что угол вхождения при минимальном фактическом плече силы будет явно меньше, чем угол вхождения при максимальном фактическом плече силы. Направляющая дуга 20, первое цепное зубчатое колесо 2 и цепь 1 могут быть далее выполнены и расположены таким образом, что именно тогда, когда на первом цепном зубчатом колесе 2 цепь 1 воздействует с минимальным фактическим плечом 16, 16′ силы, цепь 1 на направляющей дуге 20 воздействует с максимальным фактическим плечом силы, и наоборот.

Дальнейшее частично функциональное описание примеров выполнения изобретения выявляется также на основании нижеследующего.

Количество зубьев используемых цепных зубчатых колес 2, 3 является четным. Это действительно в том случае, если угол обхвата цепи 1 составляет примерно 180°, что является нормой для эскалатора/пассажирского конвейера. Решающим является то, что фактическое плечо силы на стороне верхней ветви всегда, в основном, идентично фактическому плечу силы на стороне нижней ветви. При рассчитанной на верхнюю ветвь компенсации эффекта многогранника это способствует тому, что с постоянной скоростью движется не только верхняя ветвь, но и нижняя ветвь (в случае нечетного числа зубьев при угле обхвата 180° нижняя ветвь двигалась бы примерно с удвоенной неравномерностью по сравнению с традиционным приводом, то есть с приводом без компенсации эффекта многогранника).

Угол обхвата может быть выполнен также и отличным от 180° при условии, что фактические плечи сил в верхней и нижней ветвях идентичны. Это означает, что количество зубьев и угол обхвата должны быть тогда приведены в соответствие для данного случая. При соблюдении данного условия в верхней и в нижней ветвях устанавливаются соразмерные скорости цепи, которые необходимы для спокойного хода эскалатора/пассажирского конвейера.

Та же самая закономерность, что и у ведомого цепного зубчатого колеса 2, действует также и для неведомой направляющей станции (у эскалаторов, как правило, нижняя посадочная станция). Соблюдение идентичных действующих плеч силы и здесь является важным. Это касается также случая, когда для перемены направления используется не цепное зубчатое колесо 2, а незубчатая смонтированная стационарно или установленная упруго/эластично направляющая дуга 20. Это означает, что радиусы или диаметр направляющей дуги должны быть рассчитаны с учетом диаметра роликов цепи таким образом, чтобы центры шарниров цепи 1 сходили по соответствующей делительной окружности, которая соответствует делительной окружности цепного зубчатого колеса с соответствующим количеством зубьев.

Так как цепные зубчатые колеса 2, 3 движутся не с постоянной угловой скоростью, и этот эффект при меньшем количестве зубьев усиливается, необходимо принимать во внимание, что они выполняются как можно более легкими, то есть с малым моментом инерции, чтобы оказываемые ими на цепи/ступени/поддоны возмущающие усилия были максимально малы. В частности, в удаленно расположенных от центра вращения местах необходимо обращать внимание на оптимизацию массы, и при определенных условиях необходимо предусматривать соответствующие облегчающие выемки или нечто подобное.

За счет прилегания с эффектом многогранника, в частности цепи 1 с большим количеством звеньев к цепным зубчатым колесам 2, 3, обычно от одного зубчатого контакта к другому зубчатому контакту изменяется межосевое расстояние между цепными зубчатыми колесами 2, 3. Цепь 1, не считая упругого удлинения, всегда имеет постоянную длину. Ведущие зубчатые колеса цепного привода установлены обычно стационарно, а направляющие цепные зубчатые колеса упругоэластично и с возможностью линейного перемещения на креплении 10. Направляющие цепные зубчатые колеса осуществляют, таким образом, постоянно от шага к шагу линейное перемещение. Оно тем больше, чем больше шаг цепи и чем меньше количество зубьев цепного зубчатого колеса.

У традиционных эскалаторов с относительно небольшим шагом цепи и относительно большим количеством зубьев такое положение вещей при известных условиях не должно приниматься во внимание.

У эскалатора в соответствии с изобретением (или у пассажирского конвейера) шаг может быть очень большим, а именно 1/1 или 1/2 шага ступеней/поддонов, а количество зубьев очень маленьким, а именно вплоть до 6 или 4, то здесь может иметь место большое линейное перемещение второго служащего в качестве направляющего колеса цепного зубчатого колеса 3 или направляющей дуги 20, что при этом образуется препятствующая спокойному ходу эскалатора/пассажирского конвейера компонента. Ввиду такого большого линейного перемещения направляющей станции возникают возмущающие силы инерции, и могут появиться также нежелательные шумы. Особо неблагоприятным является обстоятельство, при котором ведущее и направляющее цепные зубчатые колеса имеют одинаковое угловое положение (измеренное, к примеру, углом α или β угла цепного зубчатого колеса относительно горизонтали).

Поэтому относительное угловое положение α, β цепных зубчатых колес 2, 3 должно приниматься во внимание, то есть оно должно быть противоположно по фазе: между угловым положением первого цепного зубчатого колеса 2 и угловым положением второго цепного зубчатого колеса 3 должна быть примерно половина углового шага (±20%) (угловой шаг = 360°, поделенный на количество зубьев). То есть межосевое расстояние, высота подъема и длина цепей должны быть согласованы друг с другом.

Первое и второе цепные зубчатые колеса 2, 3 далее должны иметь, по возможности, одинаковое количество зубьев. Отклонение от одинакового количества зубьев в пределах ±30% при этом допустимо.

Далее придается значение направляющей цепей. Используемые в примере осуществления эскалатора в соответствии с изобретением направляющие 18, 19 способствуют вхождению цепи 1 на цепные зубчатые колеса 2, 3 как раз над минимальным фактическим плечом силы. Далее эти направляющие оптимальным образом загнуты на концах, что способствует тому, что цепям 1 непосредственно перед попаданием на цепные зубчатые колеса 2, 3 или после их схода с цепных зубчатых колес 2, 3 на направляющие придается скоростная компонента в радиальном направлении. Ударная компонента центров цепных шарниров во впадины между зубьями цепных зубчатых колес или на направляющие 18, 19, таким образом, значительно снижается, что приводит к значительно более низким шумам и к более благоприятным ходовым свойствам.

Направляющие цепей, которые способствуют тангенциальному вхождению цепей на цепные зубчатые колеса и, таким образом, снижают шумы при вхождении (цепь - цепное зубчатое колесо), не могут использоваться применительно к эскалатору в соответствии с изобретением, так как при имеющем место в данном случае уменьшенном количестве зубьев цепных зубчатых колес и в силу выявляемых на основании этого угловых соотношений нагрузка для ходовых роликов становится слишком большой и, соответственно, ролики следовало бы рассчитывать на эти нагрузки, что сильно удорожало бы их. Кроме того, при таком расположении направляющих имело бы место значительное колебательное движение направляющей станции с соответствующими недостатками, как уже упоминалось ранее.

У эскалатора в соответствии с изобретением действительная высота направляющей 18, 19 находится между минимальным и максимальным фактическими плечами силы, вблизи минимального плеча силы. Если ее устанавливают на действительной высоте, то это способствует тому, что при работающей машине колебательное движение направляющей станции приближается к нулю, что абсолютно позитивно отражается на плавности хода. Кроме того, при таком расположении направляющих ходовые ролики нагружены лишь очень незначительно. Таким образом, можно использовать относительно экономичные ходовые ролики.

Оптимальная высота направляющей цепи определяется следующим образом: цепные шарниры сгибаются на определенный угол, когда они покидают направляющие 18, 19. Здесь можно графически или же мысленно образовать малый прямоугольный треугольник, гипотенузой которого является рассматриваемое звено цепи, причем один из катетов образуется посредством горизонтали. С помощью угловых функций можно рассчитать все без исключения размеры. Образуют сумму горизонтальных катетов и определяют ее для различных угловых положений цепных зубчатых колес в пределах углового шага. Таким образом, мысленно можно вновь и вновь пропускать цепь на небольшое расстояние вперед и прокручивать цепные зубчатые колеса далее до тех пор, пока они не повернутся на угловой шаг. Угловой шаг, к примеру, в 60° подразделяется, таким образом, к примеру, на 20 шагов по 3°. Высота направляющих изменяется до тех пор, пока сумма горизонтальных катетов в различных угловых положениях не окажется максимально приближенной к постоянной величине. Там, где эти отклонения достигли своего минимума, линейное перемещение направляющих цепных зубчатых колес/направляющей станции также минимально.

У реальных эскалаторов, при известных условиях, учитывались бы еще и воздействия эффекта многогранника, которые при прохождении цепей по направляющим для цепей имеют место в переходах от горизонтальных фрагментов к фрагментам, имеющим подъем (радиусы поворота).

1. Эскалатор, содержащий множество ступеней или поддонов; по меньшей мере, одну цепь (1), предназначенную для приведения в действие ступеней или поддонов; первое цепное зубчатое колесо (2), по которому частично проходит цепь (1), причем цепь (1) при сходе с первого цепного зубчатого колеса (2) образует верхнюю ветвь (5) и нижнюю ветвь (6); второе цепное зубчатое колесо (3), по которому частично проходит цепь (1), а также средства для компенсации эффекта многогранника при движении цепных зубчатых колес (2, 3), отличающийся тем, что первое цепное зубчатое колесо (2) и второе цепное зубчатое колесо (3) выполнены с возможностью приведения в движение относительно друг друга, причем при минимальном фактическом плече (16, 16′) силы на первом цепном зубчатом колесе (2) в той же ветви (5, 6) фактическое плечо (17, 17′) силы на втором цепном зубчатом колесе (3) не является минимальным, предпочтительно отличается от максимального значения максимум на 20% разности между максимальным и минимальным значениями, в частности, является максимальным.

2. Эскалатор по п.1, отличающийся тем, что фактическое плечо (16, 17) силы цепи (1) на цепных зубчатых колесах (2, 3) в верхней ветви (5), в основном, равно фактическому плечу (16′, 17′) силы цепи (1) на цепных зубчатых колесах (2, 3) в нижней ветви (6).

3. Эскалатор по п.1 или 2, отличающийся тем, что эскалатор содержит, по меньшей мере, одну направляющую (18, 19), которая выполнена с возможностью воздействия на первое и/или второе цепное зубчатое колесо (2, 3) для изменения угла (φ1, φ2) вхождения цепи (1), причем, по меньшей мере, одна направляющая (18, 19) расположена таким образом, что угол (φ1, φ2) вхождения при минимальном фактическом плече (16, 16′) силы меньше, чем при максимальном фактическом плече (17, 17′) силы.

4. Эскалатор по п.1 или 2, отличающийся тем, что первое цепное зубчатое колесо (2) выполнено в виде приводного цепного зубчатого колеса.

5. Эскалатор по п.1 или 2, отличающийся тем, что второе цепное зубчатое колесо (3) выполнено в виде направляющего колеса.

6. Эскалатор по п.1 или 2, отличающийся тем, что содержит четное количество зубьев первого и/или второго цепного зубчатого колеса (2, 3).

7. Эскалатор по п.1 или 2, отличающийся тем, что количество зубьев первого цепного зубчатого колеса (2) меньше или равно 12, в частности 4 или 6.

8. Эскалатор по п.1 или 2, отличающийся тем, что количество зубьев второго цепного зубчатого колеса (3) меньше или равно 12, в частности 4 или 6.

9. Эскалатор по п.1 или 2, отличающийся тем, что количество зубьев первого цепного зубчатого колеса (2) не равно, или почти равно, или равно количеству зубьев второго цепного зубчатого колеса (3).

10. Эскалатор по п.1 или 2, отличающийся тем, что средний угол (ν) обхвата первого и/или второго цепного зубчатого колеса (2, 3) отличается от целого кратного углового шага (τ) максимально на ±20% углового шага (τ).

11. Эскалатор по п.10, отличающийся тем, что средний угол (υ) обхвата первого и/или второго цепного зубчатого колеса (2, 3) является целым кратным углового шага (т).

12. Эскалатор по п.1 или 2, отличающийся тем, что угловое положение первого цепного зубчатого колеса (2) отличается от углового положения второго цепного зубчатого колеса (3), по меньшей мере, на ±30% углового шага (τ).

13. Эскалатор по п.12, отличающийся тем, что угловое положение первого цепного зубчатого колеса (2) отличается от углового положения второго цепного зубчатого колеса (3), по меньшей мере, на ±40% углового шага (т), в частности на половину углового шага (τ).

14. Эскалатор, содержащий множество ступеней или поддонов; по меньшей мере, одну цепь (1), предназначенную для приведения в действие ступеней или поддонов; первое цепное зубчатое колесо (2), по которому частично проходит цепь (1), причем цепь (1) при сходе с первого цепного зубчатого колеса (2) образует верхнюю ветвь (5) и нижнюю ветвь (6); направляющую дугу (20), по которой частично проходит цепь (1), а также средства для компенсации эффекта многогранника при движении цепного зубчатого колеса (2), отличающийся тем, что первое цепное зубчатое колесо (2) и направляющая дуга (20) выполнены с возможностью приведения в движение относительно друг друга, причем при минимальном фактическом плече (16, 16′) силы на первом цепном зубчатом колесе (2) в той же ветви (5, 6) фактическое плечо (17, 17′) силы на направляющей дуге (20) не является минимальным, предпочтительно отличается от максимального значения максимум на 20% разности между максимальным и минимальным значениями, в частности, является максимальным.

15. Эскалатор по п.14, отличающийся тем, что средний угол (υ) обхвата направляющей дуги (20) отличается от целого кратного углового шага (τ) максимально на ±20% углового шага (τ).

16. Эскалатор по п.15, отличающийся тем, что средний угол (υ) обхвата направляющей дуги (20) является целым кратным углового шага (τ).



 

Похожие патенты:

Изобретение относится к подъемно-транспортному машиностроению, в частности к приводам эскалаторов. .

Изобретение относится к области транспортирования, в частности к способу и устройству для обеспечения равномерного движения транспортирующих цепей, используемых в эскалаторах или движущихся пешеходных дорожках.

Изобретение относится к подъемно-транспортным устройствам, в частности к устройствам, предназначенным для подъема и опускания груза. .

Изобретение относится к подъемно-транспортному машиностроению, в частности, к непрерывному пассажирскому транспорту, и может быть использовано в качестве привода тоннельного эскалатора, предназначенного для больших высот подъема.

Изобретение относится к подъемно-транспортному машиностроению. .

Изобретение относится к подъемно-транспортному машиностроению. .

Изобретение относится к подъемно-транспортному машиностроению ,в частности к эскалаторам и пассажирским конвейерам, и предназначено для привода лестничного полотна и привода поручня.

Изобретение относится к приводному и/или огибному элементу для цепи, в частности приводной и/или транспортной цепи непрерывного транспортера для перевозки людей или пассажиров вместе с их ручным багажом

Изобретение относится к эскалатору

Изобретения могут использоваться в конструкции пассажирского конвейера. Тормоз главного приводного вала пассажирского конвейера согласно вариантам его выполнения содержит тормозной элемент, пусковое устройство и противопусковое устройство. Во втором варианте выполнения тормоза, в частности, используется высвобождающий рычаг, присоединенный к тормозному элементу для его удержания в поднятом положении, соответствующем положению готовности. Пусковое устройство перестают снабжать электроэнергией для высвобождения тормозного элемента и остановки пассажирского конвейера при нештатных или аварийных ситуациях. Снабжаемое электроэнергией противопусковое устройство позволяет высвобождать тормозной элемент, но когда противопусковое устройство не снабжается электроэнергией, оно блокирует высвобождение тормозного элемента с блокировкой его ненамеренного высвобождения, вызванного, например, отсутствием электроэнергии в сети электропитания в результате аварии. Изобретения обеспечивают повышение надежности торможения пассажирского конвейера. 4 н. и 15 з.п. ф-лы, 8 ил.

Изобретение относится к аварийному тормозу эскалатора или траволатора. Аварийный тормоз содержит, по меньшей мере, один блокировочный элемент (21), расположенный таким образом, что он посредством поворотного движения занимает положение освобождения или блокирования. В положении блокирования блокировочный элемент (21) входит, по меньшей мере, в одну подвижную часть (18) эскалатора или траволатора, блокируя ее. Кроме того, аварийный тормоз содержит линейную направляющую (23), посредством которой блокировочный элемент (21) линейно перемещается между первой позицией (25) и второй позицией (26). Линейная направляющая (23) расположена на неподвижной части (5) эскалатора или траволатора посредством оси поворота (22). Изобретение обеспечивает повышение надежности тормоза. 2 н. и 14 з.п. ф-лы, 7 ил.
Наверх