Способ извлечения керобитумов из подземной сланцевой формации и способ разрыва подземной сланцевой формации

Группа изобретений относится к извлечению органических молекул из подземных сланцевых ресурсов, содержащих органический компонент керобитумов, в частности, включающему в себя стадию увеличения доступности указанных компонентов керобитумов для текучих сред. Обеспечивает повышение эффективности способа. Сущность изобретений: способ включает извлечение продукта на основе керобитумов из подземной сланцевой формации, содержащей подземные сланцы, и содержит следующие стадии: а) увеличение доступности для текучих сред керобитумов в подземных сланцах, содержащих неорганические компоненты в дополнение к керобитумам, включающая в себя следующие этапы: бурение обсаженных нагнетательных скважин в подземной сланцевой формации; доставка в нагнетательную скважину суспензии, содержащей жидкий СО2 и твердый СО2; повышение давления в скважине посредством образования жидким СО2 и твердым СО2 в скважине сверхкритического СО2, при этом создавая высокое давление в скважине; понижение давления в скважине с высоким давлением для получения стационарного пониженного давления, при этом соответствующим адиабатическим расширением СО2 охлаждают подземную сланцевую формацию и вызывают термические и механические напряжения внутри формации, приводящие к разрыву формации; б) приведение в контакт керобитумов в подземных сланцах с химически активной текучей средой для создания подвижного продукта на основе керобитумов; в) транспортировка подвижного продукта на основе керобитумов из подземной сланцевой формации с получением извлеченного продукта на основе керобитумов. 2 н. и 17 з.п. ф-лы, 5 ил.

 

Область техники, к которой относится изобретение

Настоящее изобретение относится к способам извлечения органических молекул из подземных сланцевых ресурсов, содержащих органический компонент керобитумов, в частности, включающим в себя стадию увеличения доступности указанных компонентов керобитумов для текучих сред.

Уровень техники

Если предсказания теории пика Хубберта верны, мировое производство нефти скоро достигнет пика, если уже не достигло. Тем не менее, мировое потребление энергии продолжает расти со скоростью, которая превышает обнаружение новых запасов нефти. В результате должны разрабатываться альтернативные источники энергии, а также новые технологии для доведения до максимума производства и эффективного потребления нефти. Смотри Т.Mast, Over a Barrel: A Simple Guide to the Oil Shortage, Greenleaf Book Group, Austin, TX, 2005.

В частности, привлекательным альтернативным источником энергии являются битуминозные сланцы, их привлекательность связана, прежде всего, с тем фактом, что нефть может быть "извлечена" из сланца и впоследствии рафинирована способом, сильно напоминающим способ переработки для сырой нефти. Технологии, включающие в себя извлечение, однако, должны разрабатываться дополнительно, до того как битуминозные сланцы станут коммерчески жизнеспособным источником энергии. Смотри J.T.Bart is et al. Oil Shale Development in the United States: Prospects and Policy Issues, RAND Corporation, Arlington, VA, 2005.

Самые большие известные отложения битуминозных сланцев обнаружены в формации Green River, которая покрывает части Колорадо, Юты и Вайоминга. Оценки количества извлекаемой нефти из отложений Формации Green River достигают 1,1 триллиона баррелей нефти - почти в четыре раза больше, чем известные запасы нефти в Саудовской Аравии. При текущих уровнях потребления в США (примерно 20 миллион баррелей в день), эти сланцевые отложения могут обеспечить США в течение следующих 140 лет (Bartis et al.). Наконец, такие сланцевые ресурсы могли бы умерить цены на нефть и уменьшить зависимость США от иностранной нефти.

Битуминозный сланец, как правило, состоит из неорганических компонентов (в основном, углеродистый материал, то есть карбонаты) и органических компонентов (керобитумы). Термическая обработка может использоваться для разрушения (то есть для "крекинга") керобитумов на меньшие углеводородные цепи или фрагменты, которые являются газообразными или жидкими при лабораторных условиях, и она облегчает отделение от неорганического материала. Это термическая обработка керобитумов известна также как "термическое рафинирование" или "ретортная перегонка" и может осуществляться либо на поверхности, либо на месте, при этом в последнем случае текучие среды, сформированные таким образом, впоследствии транспортируются на поверхность.

В некоторых применениях ретортной перегонки на поверхности битуминозные сланцы сначала добывают шахтным способом или открытым способом, и только на поверхности битуминозный сланец измельчают, а затем обессоливают (подвергают ретортной перегонке) для завершения процесса преобразования битуминозных сланцев в сырую нефть (иногда упоминается как "сланцевая нефть"). Смотри, например, патент США №3489672. Сырая нефть затем транспортируется на нефтеперерабатывающий завод, где, как правило, требуются дополнительные стадии переработки (кроме стадий, необходимых для традиционной сырой нефти) перед получением конечных продуктов, таких как бензин, смазочные материалы и тому подобное. Различные виды переработки для химического рафинирования можно также осуществлять на сланцах до ретортной перегонки. Смотри, например, заявку на патент США №5091076.

Способ для ретортной перегонки на месте углеродистых отложений, таких как битуминозные сланцы, описан в заявке на патент США №4162808. В этом способе сланцы подвергают ретортной перегонке в последовательности реторт, соединенных горизонтальными проходами, с использованием горения (на воздухе) углеродистых материалов как источника тепла.

Нефтяная компания Shell разрабатывает новые способы, которые используют электрический нагрев для рафинирования подземных углеводородов на месте, прежде всего в подземных формациях, расположенных приблизительно в 200 милях (320 км) на запад от Денвера, Колорадо. Смотри, например, патент США №7121342, патент США №6991032. В таких способах нагревательный элемент опускают в скважину и дают возможность для нагрева керобитумов в течение периода приблизительно в четыре года, медленно преобразуя (рафинируя) его до нефти и газов, которые затем откачивают на поверхность. Для получения равномерного нагрева от 15 до 25 нагревательных скважин должны быть пробурены на каждом акре. В дополнение к этому предусматривается также технология заморозки грунта для создания подземного барьера по периметру зоны извлечения для предотвращения попадания грунтовых вод и высвобождения продуктов ретортной перегонки. Хотя установление "замороженных стенок" является установившейся практикой в гражданском строительстве, его применение в добыче битуминозных сланцев по-прежнему содержит неизвестные воздействия на окружающую среду. В дополнение к этому подход компании Shell определяется как энергетически интенсивный способ и требует продолжительных временных рамок, чтобы установить добычу из битуминозных сланцев.

Из патента США №3455383 известен способ извлечения продукта на основе керобитумов из подземной сланцевой формации, содержащей подземные сланцы, содержащий стадии увеличения доступности для текучих сред керобитумов в подземных сланцах, содержащих неорганические компоненты в дополнение к керобитумам, приведения в контакт керобитумов в подземных сланцах с химически активной текучей средой для создания подвижного продукта на основе керобитумов и транспортировки подвижного продукта на основе керобитумов из подземной сланцевой формации с получением извлеченного продукта на основе керобитумов.

Однако данный способ не устраняет недостатки вышеописанных способов.

Целью настоящего изобретения является создание более простых и экономичных способов извлечения керобитумов из сланцев.

Краткое описание изобретения

Согласно изобретению создан способ извлечения продукта на основе керобитумов из подземной сланцевой формации, содержащей подземные сланцы, содержащий следующие стадии:

а) увеличение доступности для текучих сред керобитумов в подземных сланцах, содержащих неорганические компоненты в дополнение к керобитумам, включающая в себя следующие этапы:

бурение обсаженных нагнетательных скважин в подземной сланцевой формации;

доставка в нагнетательную скважину суспензии, содержащей жидкий СO2 и твердый СO2;

повышение давления в скважине посредством образования жидким СO2 и твердым СO2 в скважине сверхкритического СO2, при этом создавая высокое давление в скважине;

понижение давления в скважине с высоким давлением для получения стационарного пониженного давления, при этом соответствующее адиабатическое расширение СO2 охлаждает подземную сланцевую формацию и вызывает термические и механические напряжения внутри формации, приводящие к разрыву формации;

б) приведение в контакт керобитумов в подземных сланцах с химически активной текучей средой для создания подвижного продукта на основе керобитумов;

в) транспортировка подвижного продукта на основе керобитумов из подземной сланцевой формации с получением извлеченного продукта на основе керобитумов.

Этапы повышения давления и понижения давления могут повторяться до достижения равновесного давления.

Керобитум может по меньшей мере частично отслаиваться от неорганических компонентов сланцев в результате действия термических и механических напряжений.

Взрывчатые вещества могут добавляться к суспензии сжиженного и твердого СO2 для увеличения горизонтальных проходов и разрыва формации.

Стадия приведения в контакт керобитумов в подземных сланцах с химически активной текучей средой для создания подвижного продукта на основе керобитумов может включать в себя химическую модификацию керобитумов. Химическая модификация может включать в себя по меньшей мере некоторый крекинг керобитумов.

Химически активная текучая среда может содержать первый компонент, выбранный из группы, состоящей из двуокиси углерода (СO2), азота (N2), сжиженного природного газа (LNG), аммиака (NН3), моноокиси углерода (СО), аргона (Аr), сжиженного нефтяного газа (LPG), водорода (Н2), сероводорода (H2S), воздуха, C1-C20 углеводородов и их сочетания; и второй компонент, выбранный из группы, состоящей из органических кислот, неорганических кислот, пероксидов, химикалиев, образующих свободные радикалы, кислот Льюиса, гуминовых агентов деполимеризации, катализаторов диспропорционирования олефинов, химически активных газов, ферментов, микробов, плазмы, катализаторов и их сочетания.

Химическая модификация керобитумов может обеспечиваться агентом для модификации, выбранным из группы, состоящей из ферментов, горячих газов, катализаторов, кислот и их сочетания.

Стадия транспортировки подвижного продукта на основе керобитумов из подземной сланцевой формации может включать в себя использование текучих сред для извлечения.

Текучая среда для извлечения может выбираться из группы, состоящей из диоксида углерода (СO2), азота (N2), сжиженного природного газа (LNG), аммиака (NН3), моноокиси углерода (СО), аргона (Аr), сжиженного нефтяного газа (LPG), водорода (Н2), сероводорода (H2S), воздуха, C120 углеводородов и их сочетания.

Текучая среда для извлечения может не отличаться от химически активной текучей среды.

Может использоваться откачка для транспортировки подвижного продукта на основе керобитумов из подземной области.

Извлеченный продукт на основе керобитумов может рафинироваться с получением одного или нескольких коммерческих продуктов на основе нефти.

Способ может дополнительно содержать после этапа повышения давления и до этапа понижения давления промежуточный этап приведения в контакт сланцев с нагретой текучей средой для увеличения термических напряжений, создаваемых в подземной сланцевой формации.

Согласно изобретению создан способ разрыва подземной сланцевой формации, содержащей подземные битуминозные сланцы, включающие керобитумы и неорганические компоненты для увеличения проницаемости подземных сланцев для текучих сред, содержащий следующие стадии:

а) бурение обсаженных нагнетательных скважин в подземной сланцевой формации;

б) доставка текучих сред в плотной фазе в скважину и герметизации нагнетательной скважины для герметизации скважины;

в) повышение давления в герметичной скважине посредством предоставления возможности текучей среде в плотной фазе внутри герметичной скважины для повышения, при этом создавая высокое давление в скважине;

г) понижение давления в скважине с высоким давлением для получения стационарного состояния с пониженным давлением, при этом соответствующее адиабатическое расширение текучей среды в плотной фазе охлаждает подземную сланцевую формацию и вызывает термические и механические напряжения внутри формации, приводящие к разрыву формации.

Текучая среда в плотной фазе может содержать суспензию жидкого СO2 и твердого СO2.

Стадии повышения давления и понижения давления могут повторяться.

Керобитум может по меньшей мере частично отслаиваться от неорганических компонентов сланцев в результате термических и механических напряжений.

Взрывчатые вещества могут добавляться к текучей среде в плотной фазе для увеличения горизонтальных проходов и разрыва формации.

Краткое описание чертежей

Для более полного понимания настоящего изобретения и его преимуществ приведено описание со ссылками на прилагаемые чертежи, на которых изображено следующее:

фиг.1 изображает стадии способа химического модифицирования подземных керобитумов, связанных со сланцами, для обеспечения их подвижности и извлекаемости;

фиг.2 изображает стадии способа увеличения доступности керобитумов для текучих сред в соответствии с некоторыми вариантами осуществления настоящего изобретения;

фиг.3 изображает стадии интегральных способов переработки извлеченного продукта, содержащего нефть из подземных битуминозных сланцев, в соответствии с некоторыми вариантами осуществления настоящего изобретения;

фиг.4 представляет собой блок-схему системы для осуществления вариантов осуществления интегрального способа переработки по настоящему изобретению;

фиг.5 представляет собой схему способа разрыва подземной формации сланцев в соответствии с вариантами осуществления системы и/или способа по настоящему изобретению.

Подробное описание изобретения

Настоящее изобретение направлено на способы извлечения продукта на основе керобитумов из подземных формаций (битуминозных) сланцев, основанных на разрыве и/или создании горизонтальных проходов в частях указанных формаций для увеличения их проницаемости для текучих сред и на химическом модифицировании керобитумов, связанных со сланцами для обеспечения их подвижности. Настоящее изобретение также направлено на системы для осуществления некоторых таких способов.

"Сланцы", как здесь определено, как правило, относятся к "битуминозным сланцам" и представляет собой общий термин, применяемый к группе пород, достаточно обогащенных органическими материалами (называемых керобитумами), для получения нефти при пиролизе и дистилляции. Такие сланцы, как правило, являются подземными и содержат неорганические компоненты (обычно карбонаты) в дополнение к компонентам керобитумов.

"Керобитумы", как здесь определено и как рассмотрено выше, представляют собой органические компоненты сланцев. На молекулярном уровне керобитумы содержат молекулы с очень высокой молекулярной массой, которые, как правило, являются нерастворимыми из-за их высоких молекулярных масс и тому подобного, связанные с неорганическими компонентами сланцев. Часть керобитумов, которая является растворимой, известна как "битум", который, как правило, представляет собой самый тяжелый компонент сырой нефти. Фактически, в геологическом смысле, керобитум является предшественником сырой нефти. Керобитум, как правило, идентифицируется как представляющий собой один из пяти типов: Тип I, Тип II, Тип II-сера, Тип III или Тип IV, на основе его отношения С:Н:O и содержания серы в различных типах, как правило, их получают из различных источников ископаемых биологических материалов.

Термин "на основе керобитумов" используется для обозначения молекулярного продукта или промежуточного продукта, полученного из керобитумов; такое получение требует химического модифицирования керобитумов, и термин не включает в себя получение, осуществляемое на геологических временных масштабах.

"Подземная формация сланцев" представляет собой подземную геологическую формацию, содержащую (нефтеносные) сланцы.

"Формация, содержащая углеводороды, с низкой проницаемостью" относится к формации, имеющей проницаемость меньше, примерно, чем 10 миллиардных, где указанная формация содержит углеводородный материал. Примеры такой формации включают в себя, но не ограничиваясь этим, диатомит, уголь, плотные сланцы, плотные песчаники, плотные карбонаты и тому подобное.

"Текучая среда в плотной фазе" представляет собой негазообразную текучую среду. Такие текучие среды в плотной фазе включают в себя жидкости и сверхкритические текучие среды.

"Сверхкритические текучие среды" представляют собой любое вещество при температуре и давлении, которые превышают его термодинамические критические параметры. Сверхкритические текучие среды могут рассматриваться как "гибридные растворители" со свойствами, промежуточными между газами и жидкостями, то есть как растворитель с низкой вязкостью, высокой скоростью диффузии и не имеющий поверхностного натяжения. Наиболее распространенные сверхкритические текучие среды представляют собой сверхкритическую двуокись углерода (СO2) и сверхкритическую воду.

Термин "механические напряжения" относится к структурным напряжениям внутри сланцевой формации, которые возникают в результате вариаций давления внутри формации. Такие напряжения могут приводить к разрыву и/или к созданию горизонтальных проходов в сланцевой формации.

Термин "термические напряжения" относится к структурным напряжениям внутри сланцевой формации, которые возникают в результате термических флуктуаций. Такие термические напряжения могут индуцировать внутренние механические напряжения как результат различий в коэффициентах теплового расширения между различными компонентами сланцевой формации. Подобно механическим напряжениям, рассмотренным выше, термические напряжения могут также приводить к разрыву и/или созданию горизонтальных проходов в сланцевой формации.

Термин "разрыв" относится к структурной деградации подземной сланцевой формации в результате приложенных термических и/или механических напряжений. Такая структурная деградация, как правило, увеличивает проницаемость сланцев для текучих сред и увеличивает доступность компонентов керобитумов для таких текучих сред. Фраза "создание горизонтальных проходов" представляет собой более широкий процесс разрыва, создающий плоскости трещин во множестве направлений, создающих в сланце "горизонтальные проходы".

Термин "крекинг" относится к разрыву связей углерод-углерод в керобитуме для получения частиц с более низкими молекулярными массами. "Ретортная перегонка" обеспечивает термический крекинг керобитумов. "Рафинирование" обеспечивает крекинг керобитумов, но может включать в себя термический или химический агент для рафинирования. Соответственно, термин "термическое рафинирование" является синонимом термина "ретортная перегонка".

Термин "на месте", используемый по отношению к крекингу или рафинированию керобитумов, относится к крекингу или рафинированию, осуществляемому в природной окружающей среде керобитумов. В противоположность известному способу компании Shell, описанному в известном уровне техники, способы по настоящему изобретению не осуществляются полностью на месте, поскольку сначала должен осуществляться разрыв сланцевой формации, при этом изменяется природное состояние окружающей среды керобитумов.

Термин "коммерческие продукты на основе нефти" относится к коммерческим продуктам, которые включают в себя, но не ограничиваясь этим, бензин, дизельное топливо, смазочные материалы, продукты нефтехимии и тому подобное. Такие продукты могут также включать в себя обычные химические промежуточные продукты и/или смеси исходных материалов.

Как показано на фиг.1, в некоторых вариантах осуществления настоящее изобретение, как правило, направлено на способы извлечения продукта на основе керобитумов из подземной сланцевой формации, содержащей подземные сланцы, способы включают в себя стадии: стадию 101 увеличения доступности для текучих сред керобитумов в подземных сланцах (например, увеличения проницаемости сланцев), где подземные сланцы содержат неорганические компоненты в дополнение к керобитумам, стадию 102 приведения в контакт керобитумов в подземных сланцах с текучей средой (или текучими средами) для извлечения, для создания подвижного продукта на основе керобитумов и стадию 103 транспортировки подвижного продукта на основе керобитумов из подземной сланцевой формации, с получением извлеченного продукта на основе керобитумов.

Стадия 101 увеличения доступности подземных сланцев для текучих сред может включать в себя разнообразные методики и/или технологии, такие как, но не ограничиваясь этим, взрывчатые вещества, гидроразрыв, пропелленты и тому подобное. Как правило, любой способ разрыва и/или создания областей с горизонтальными проходами из сланцевой формации для обеспечения большей проницаемости сланцев для текучих сред является пригодным для использования. Такие разрывы и/или создание горизонтальных проходов может также включать в себя химикалии, химически активные по отношению, например, по меньшей мере к части неорганических компонентов сланцев.

Стадия 102 приведения в контакт керобитумов с текучей средой для извлечения, как правило, включает в себя химическую модификацию на месте керобитумов (например, крекинг) и/или окружающих сланцев с тем, чтобы сделать модифицированный компонент керобитумов подвижным (смотри ниже). Такое химическое модифицирование, как правило, включает в себя создание и/или разрыв химических связей.

Стадия 103 транспортировки подвижного продукта на основе керобитумов из подземной сланцевой формации не является как-либо ограниченной, но может, как правило, быть описана как средства для перемещения подвижного продукта на основе керобитумов из подземной формации, где такие средства могут быть активными (например, откачка) и/или пассивными.

В некоторых вариантах осуществления описанный выше способ может включать в себя одну или несколько дополнительных стадий, которые служат для отбора образцов, впоследствии анализа сланцев перед осуществлением стадии 101. Такой отбор и анализ образцов может иметь прямое воздействие на технологии, используемые на следующей стадии.

В некоторых вариантах осуществления анализ и/или мониторинг разрыва и/или создания горизонтальных проходов подземной сланцевой формации может быть осуществлен во время осуществления стадии 101 или после нее. Такой анализ и/или мониторинг может быть осуществлен с использованием технологии, известной в данной области для выполнения таких задач.

В некоторых вариантах осуществления извлеченный продукт на основе керобитумов рафинируется (термически и/или химически) на поверхности. Такое рафинирование на поверхности может быть промежуточным по отношению к последующему рафинированию.

Одновременно, обращаясь к описанному выше способу и фиг.1, в некоторых вариантах осуществления стадия 101 увеличения доступности включает в себя стадию 201 бурения обсаженных нагнетательных скважин в подземных сланцевых формациях, содержащих подземные сланцы, стадию 202 повышения давления, а впоследствии герметизации нагнетательной скважины с помощью текучей среды в плотной фазе для создания скважины высокого давления и стадию 203 быстрого понижения давления в скважине высокого давления для получения стационарного состояния с пониженным давлением. В некоторых таких вариантах осуществления стадии повышения давления и понижения давления повторяются до достижения равновесного давления.

Текучая среда в плотной фазе может представлять собой любую такую текучую среду, которая соответствующим образом обеспечивает увеличение доступности керобитумов для текучих сред, как правило, благодаря разрыву и/или созданию горизонтальных проходов в сланцах, в которых находится керобитум. В некоторых вариантах осуществления текучая среда в плотной фазе содержит компонент, выбранный из группы, состоящей из двуокиси углерода (СО2), азота (N2), сжиженного природного газа (LNG), аммиака (NН3), моноокиси углерода (СО), аргона (Аr), сжиженного нефтяного газа (LPG), водорода (Н2), сероводорода (H2S), воздуха, C1-C20 углеводородов (включая, но не ограничиваясь этим, этан, пропан, бутан и их сочетания) и тому подобное.

В некоторых вариантах осуществления давление в скважине высокого давления превышает давление разрыва подземной сланцевой формации. Такое давление разрыва формации может быть обеспечено предварительно, например, для содействия прямому выбору переменных параметров, используемых на этой стадии.

В некоторых вариантах осуществления текучая среда в плотной фазе поглощается керобитумом, и керобитум впоследствии набухает, расширяет подземную сланцевую формацию и создает механические напряжения, приводящие к последующему разрыву и/или созданию горизонтальных проходов в формации, в некоторых вариантах осуществления механические напряжения создаются во время повышения давления и понижения давления на стадии усиления разрыва и/или создания горизонтальных проходов внутри подземной сланцевой формации.

В некоторых вариантах осуществления повышения давления и понижения давления создают термические и/или механические напряжения в подземной сланцевой формации. В таких некоторых вариантах осуществления керобитум по меньшей мере частично деламинируется от неорганических компонентов сланцев в результате термических напряжений.

В некоторых вариантах осуществления взрывчатые вещества добавляются к текучей среде в плотной фазе для увеличения горизонтальных проходов и разрыва формации. Примеры таких взрывчатых веществ включают в себя, но не ограничиваясь этим, сильно окисляющие вещества, нитросодержащие вещества (например, тринитротолуол, нитроглицерин), термитные смеси и тому подобное. Текучие среды в плотной фазе, к которым может быть добавлено такое взрывчатое вещество, включают в себя, но не ограничиваясь этим, двуокись углерода (СО2), азот (N2), сжиженный природный газ (LNG), аммиак (NH3), моноокись углерода (СО), аргон (Аr), сжиженный нефтяной газ (LPG), водород (H2), сероводород (Н2S), воздух, C1-C20 углеводороды (включая, но не ограничиваясь этим, этан, пропан, бутан и их сочетания) и тому подобное.

В некоторых вариантах осуществления стадия приведения в контакт керобитумов в подземных сланцах с химически активной текучей средой для создания подвижного продукта на основе керобитумов включает в себя химическую модификацию керобитумов. В таких некоторых вариантах осуществления химическая модификация включает в себя по меньшей мере некоторый крекинг керобитумов, генерирование из молекул, полученных из керобитумов, меньших молекул, которые являются, соответственно, более подвижными.

В целом химически активная текучая среда представляет собой любую текучую среду (включая смеси), которая может либо сама по себе, либо вместе с агентом, растворенным в ней, химически модифицировать керобитум с тем, чтобы сделать его подвижным и по этой причине извлекаемым. В некоторых вариантах осуществления химически активная текучая среда содержит химически активный компонент, выбранный из группы, состоящей из органических кислот (например, муравьиная кислота), неорганических кислот (например, хлористый водород), пероксидов (например, Н2O2), химикалиев, образующих свободные радикалы (например, F2), кислот Льюиса (например, АlСl3), гуминовых агентов деполимеризации (например, амины), катализаторов диспропорционирования олефинов (например, W), химически активных газов (например, Сl2), ферментов (например, липаза), микробов (например, Pseudomas), плазмы (например, Не), катализаторов (например, пирит, переходные металлы in situ) и их сочетаний. Как правило, такие химически активные компоненты диспергируются, растворяются или иным образом инкорпорируются в текучую среду в плотной фазе. Как описано выше, такие пригодные для использования текучие среды в плотной фазе включают в себя, но не ограничиваясь этим, двуокись углерода (СО2), азот (N2), сжиженный природный газ (LMG), аммиак (NН3), моноокись углерода (СО), аргон (Аr), сжиженный нефтяной газ (LPG), водород (Н2), сероводород (H2S), воздух, C120 углеводороды (включая, но не ограничиваясь этим, этан, пропан, бутан и их сочетания) и тому подобное.

В некоторых вариантах осуществления, в зависимости от условий и используемых химически активных текучих сред и от тех связей внутри керобитумов, которые разрушаются, является возможным получение подвижного продукта на основе керобитумов, который создается для сведения к минимуму извлечения тяжелых металлов и/или других нежелательных материалов или для увеличения извлечения посредством уменьшения количества золы и/или других углеродных остатков. Соответственно, является возможным получение подвижного продукта на основе керобитумов, которые требуют небольшого дополнительного рафинирования или вообще не требуют его.

В некоторых вариантах осуществления подвижный продукт на основе керобитумов извлекается из подземной формации с использованием текучих сред для извлечения. Пригодные для использования текучие среды для извлечения, подобные текучим средам в плотной фазе, включают в себя, но не ограничиваясь этим, двуокись углерода (СО2), азот (N2), сжиженный природный газ (LNG), аммиак (NН3), моноокись углерода (СО), аргон (Аr), сжиженный нефтяной газ (LPG), водород (Н2), сероводород (H2S), воздух, C1-C20 углеводороды (включая, но не ограничиваясь этим, этан, пропан, бутан и их сочетания) и тому подобное. В некоторых вариантах осуществления текучие среды для извлечения являются по существу неотличимыми от химически активных текучих сред (смотри выше).

В некоторых вариантах осуществления предполагается, что подвижный продукт на основе керобитумов содержит суспензии материала частиц керобитумов в текучих средах для извлечения. Соответственно, такой подвижный продукт на основе керобитумов не нужно растворять в таких текучих средах.

В некоторых вариантах осуществления используется откачка для транспортировки подвижного продукта на основе керобитумов из подземной сланцевой формации, и откачка может осуществляться с использованием технологии, известной специалистам в данной области. Обычная практика для нефтяных полей (как протекание газа, так и откачка текучих сред, например, штанговые насосы, электрические погружные насосы, скважинные винтовые насосы и тому подобное) могут быть модифицированы, чтобы обеспечить надежность в данной окружающей среде для добычи. Например, модификации могут потребовать изменений в металлургии, ограничения давления, эластомерных композиций, временного графика изменения температуры и тому подобного.

Добыча могла бы использовать любой стандартный промышленный способ, такой как, но не ограничиваясь этим, пароциклическая обработка скважины (то есть одна и та же скважина используется как для добычи, так и для нагнетания), способ заводнения, парового заводнения, полимерного заводнения, заводнения растворителем для извлечения, термических способов, добавления разбавителя, дренирования с помощью пара под действием силы тяжести и тому подобное.

В некоторых вариантах осуществления извлеченный продукт на основе керобитумов рафинируется с получением одного или нескольких коммерческих продуктов на основе нефти. Различные поверхностные технологии, распространенные в промышленности (например, каталитический крекинг, гидропереработка, термический крекинг, денитрофикация, десульфуризация), могут использоваться для получения желаемого коммерческого продукта из извлеченного продукта на основе керобитумов. Такое поверхностное рафинирование сильно зависит от природы извлеченного продукта на основе керобитумов по отношению к коммерческому продукту, который является желаемым.

На фиг.3 показан интегральный способ добычи, согласно изобретению включающий в себя следующие стадии: стадия 301 анализа подземных сланцевых формаций, содержащих керобитумы для получения информации относительно керобитумов, содержащихся в них, стадия 302 увеличения доступности для текучих сред керобитумов в подземных сланцах, включающих неорганические компоненты в дополнение к керобитумам, стадия 303 мониторинга увеличения доступности, получаемой на стадии 302, стадия 304 приведения в контакт керобитумов в подземных сланцах с химически активной текучей средой для создания подвижного продукта на основе керобитумов, при этом химически активная текучая среда выбирается, имея в виду информацию, полученную на стадии 301, стадия 305 транспортировки подвижного продукта на основе керобитумов из подземной сланцевой формации с получением извлеченного продукта на основе керобитумов и стадия 306 необязательной переработки извлеченного продукта на основе керобитумов.

Как правило, такой описанный выше интегральный способ добычи является совместимым (в терминах их общих стадий) с рассмотренными выше способами извлечения продукта на основе керобитумов из подземной сланцевой формации.

На фиг.4 показана система добычи, содержащая средства 401 для анализа подземных сланцевых формаций, содержащих керобитумы для получения информации относительно керобитумов, содержащихся в них, средства 402 для увеличения доступности указанных керобитумов в подземных сланцах для текучих сред, где подземные сланцы содержат неорганические компоненты в дополнение к керобитумам, средства 403 для мониторинга увеличения доступности, обеспечиваемой средствами 402, средства 404 (мобилизующие средства) приведения в контакт керобитумов в подземных сланцах с химически активной текучей средой для создания подвижного продукта на основе керобитумов, где указанная химически активная текучая среда выбирается, имея в виду информацию, полученную с помощью средств 401, средства 405 (средства для извлечения) для транспортировки подвижного продукта на основе керобитумов из подземной сланцевой формации для получения извлеченного продукта на основе керобитумов и средства 406 для необязательной переработки извлеченного продукта на основе керобитумов.

Подобно интегральным способам переработки, описанные выше варианты осуществления такой системы являются, как правило, совместимыми с рассмотренными выше способами извлечения продукта на основе керобитумов из подземной сланцевой формации. Не противоречащие таким общим принципам совместимости примеры таких средств приводятся ниже.

Средства 401 могут включать в себя технологии подземного анализа, такие как, но не ограничиваясь этим, каротаж скважин, отбор и анализ кернов (включая химический анализ керобитумов) и тому подобное. Средства 402 могут включать в себя средства или систему для увеличения доступности керобитумов для текучих сред, которая осуществляет стадии, показанные на фиг.2. Средства 403 могут включать в себя технологии подземного мониторинга, такие как, но не ограничиваясь этим, наклонометры, микросейсмичекие технологии (включая сейсмоприемники) и тому подобное (смотри, например, Phillips, W.S., et al., "Reservoir mapping using microearthquakes; Austin Chalk, Giddings Field, TX and 76 field. Clinton Co., ICY," SPE 36651, Annual Technical Conference and Exhibition, Denver, CO, Oct.6-9. 1996). Средства 404, как правило, содержат систему для закачки текучих сред в плотной фазе в источник подземных сланцев с трещинами, где текучая среда может дополнительно содержать агенты, которые работают для химического модифицирования керобитумов, с тем чтобы сделать их подвижными. Средства 405, как правило, содержат систему для извлечения подвижного продукта на основе керобитумов из подземной формации, которая может содержать текучие среды для извлечения (смотри выше) и технологию откачки. Средства 406 могут включать в себя любые системы для переработки, которые необязательно перерабатывают извлеченный продукт на основе керобитумов с получением желаемого продукта или промежуточного продукта. Примеры таких средств 406 включают в себя, но не ограничиваясь этим, обычные технологии ретортной перегонки, транспортировки в трубопроводе, обычного разделения и тому подобное.

Вариант (то есть альтернативный вариант осуществления) для описанного выше способа представляет собой применение некоторых таких описанных выше способов или их части к альтернативным источникам, то есть к формациям с низкой проницаемостью, содержащим углеводороды (например, нефть и газ), уголь на месте, тяжелую нефть на месте, нефтяные пески на месте и тому подобное. Имеется общая применимость по меньшей мере некоторых из описанных выше вариантов осуществления настоящего изобретения к любым содержащим углеводороды формациям. Применения с поверхностной переработкой могут включать в себя рафинирование битуминозных сланцев, угля, тяжелой нефти, нефтяных песков и других обычных нефтей с асфальтенами, серой, азотом и тому подобным.

Примеры

Следующие далее примеры приводятся для демонстрации конкретных вариантов осуществления настоящего изобретения. Специалист в данной области должен понять, что способы, описанные в примерах, представляют только примерные варианты осуществления настоящего изобретения. Однако специалист в данной области должен понять в свете настоящего описания, что множество изменений может быть проделано в описанных конкретных вариантах осуществления и при этом по-прежнему можно получить схожие или подобные результаты без отклонения от духа и рамок настоящего изобретения.

Пример 1

Настоящий пример служит для иллюстрации того, как сланцы в подземной формации могут отбираться для образцов и анализироваться перед разрывом и/или созданием горизонтальных проходов, в соответствии с некоторыми вариантами осуществления настоящего изобретения.

Полные или обычные керны могут быть получены с использованием стандартной технологии отбора кернов, известной в данной области, и с использованием бурового долота, такого как колонковое буровое долото Baker Hughes INTEQ. Керны со стенок скважины и круговые керны со стенок скважины также получают, но они, как правило, меньше и, как правило, имеют более низкое качество. После получения образцы кернов могут быть подвергнуты разнообразным анализам, включая, но не ограничиваясь этим, гамма-анализ керна, анализ плотности, анализ кругового изображения и сканирующую компьютерную томографию, анализ разрыва, проницаемости, пористости, анализ извлечения углеводородов при экспонировании для химически активных текучих сред, электрические измерения, измерения теплопроводности, механику пород, рентгеноструктурный анализ, ядерный магнитный резонанс, общее содержание органического углерода, флуоресцентную и/или инфракрасную спектроскопию и тому подобное.

Информация, полученная от такого анализа кернов, может служить в качестве основы при выборе соответствующих реагентов (например, текучих сред) и условий, используемых при осуществлении способов и систем по настоящему изобретению.

В дополнение к этому или вместо отбора образцов воды (смотри ниже) каротаж скважин может также осуществляться для дополнения информации, полученной посредством отбора кернов. Такие технологии могут давать информацию о том, как формация изменяется по глубине.

Пример 2

Данный пример служит для иллюстрации разрыва и/или создания горизонтальных проходов в сланцах в подземной сланцевой формации для увеличения доступности керобитумов, содержащихся в них, для текучих сред в соответствии с некоторыми вариантами осуществления настоящего изобретения и, в частности, в контексте примерного варианта осуществления системы, изображенного на фиг.5.

Показанная на фиг.5 интегральная система 500 содержит создание нагнетательной скважины 501, проходит в подземную формацию 502 (например, Uinta) и формацию 503 (например, Careen River), где последняя подразделяется на три зоны (503а, 503b и 503с). Текучие среды нагнетаются в формацию через нагнетательную скважину 501 и создают трещиноватую формацию 503b, имеющую увеличенную доступность для текучих сред у керобитумов, содержащихся в ней. Такой доступ для текучих сред дополнительно предусматривается для приведения в контакт керобитумов с химически активной текучей средой и с текучей средой для извлечения, для извлечения подвижного продукта на основе керобитумов из формации через одну или несколько добывающих скважин 505, с получением извлеченного продукта на основе керобитумов. Мониторинг воды может быть осуществлен, например, через скважину 506 для мониторинга грунтовых вод, чтобы убедиться, что не происходит загрязнения грунтовых вод в результате разрыва в имеющихся водоносных слоях. После извлечения извлеченный продукт на основе керобитумов может транспортироваться по трубам на разделение/переработку и в промышленные танки.

Пример 3

Данный пример служит для иллюстрации того, как разрыв и/или создание горизонтальных проходов в сланцах в подземной сланцевой формации может отслеживаться, в соответствии с некоторыми вариантами осуществления настоящего изобретения.

Вместо этого или в дополнение к этому в скважине (скважинах) для мониторинга грунтовых вод, описанной в примере 2, наклонометры могут устанавливаться в виде некоторой структуры на поверхности сланцевой формации. Наклонометры могут устанавливаться в 8,5-дюймовых скважинах глубиной 25 футов и с обсадкой из ПВХ труб и, возможно, с небольшим количеством цемента на дне. Они могут иметь крышку сверху и иметь панель солнечной батареи для сбора данных. Сейсмоприемники могут также устанавливаться либо на поверхности, либо под землей для сбора микросейсмической информации, чтобы помочь в отслеживании роста трещин.

Пример 4

Данный пример служит для иллюстрации способа приведения в контакт керобитумов, связанных со сланцами, с химически активной текучей средой и того, как керобитумы могут быть химически модифицированы на месте, в соответствии с некоторыми вариантами осуществления настоящего изобретения.

Такие примерные способы должны включать в себя нагнетание текучей среды в плотной фазе, такой как двуокись углерода в жидкой фазе, и химически активного сорастворителя, такого как муравьиная кислота, при концентрации, которая сделала бы возможным существование однофазной системы при температуре и давлении формации. Оптимальные рабочие характеристики могли бы достигаться при давлении и температуре, превышающих критические параметры текучей среды в плотной фазе, то есть 1070 фунт/кв. дюйм и 31°С для СO2. Сверхкритическая текучая среда будет иметь оптимальное проникновение в формацию с низкой проницаемостью благодаря низким коэффициентам диффузии и неопределенному (нулевому) поверхностному натяжению сверхкритических текучих сред. Эта текучая среда будет солюбилизировать сорастворитель/добавку (например, муравьиную кислоту) для обеспечения контакта как с неорганическими, так и органическими компонентами битуминозных сланцев. Этот контакт сделает возможным осуществление химической реакции между органическими материалами и неорганическими материалами карбонатов в битуминозном сланце для преобразования материалов в газ и/или в молекулы малых размеров, создавая увеличенную площадь поверхности и уменьшая молекулярную массу керобитумов.

Пример 5

Данный пример служит для иллюстрации того, как подвижный продукт на основе керобитумов может быть извлечен из подземной формации, в соответствии с некоторыми вариантами осуществления настоящего изобретения.

После преобразования керобитумов в подвижный продукт на основе керобитумов текучая среда для извлечения может использоваться для его транспортировки на поверхность. Как правило, текучие среды для извлечения являются по существу подобными по композиции химически активным текучим средам, хотя, как правило, они несколько обеднены химически активным агентом. Как показано на фиг.5, используя текучую среду для извлечения, напоминающую химически активную текучую среду, описанную в Примере 4, указанную текучую среду для извлечения закачивают в формацию через нагнетательную скважину (скважины) 501, приводят в контакт с подвижным продуктом на основе керобитумов в трещиноватой формации 504 и откачивают на поверхность через промышленную скважину (скважины) 505, транспортируя подвижный продукт на основе керобитумов вместе с ним, тем самым получая извлеченный продукт на основе керобитумов.

Пример 6

Данный пример служит для иллюстрации переработки после извлечения, которая может быть осуществлена на извлеченном продукте на основе керобитумов, в соответствии с некоторыми вариантами осуществления настоящего изобретения.

Если извлеченный продукт на основе керобитумов содержит существенную долю высокомолекулярных веществ, которые делают продукт очень вязким, поверхностное рафинирование может использовать термический крекинг или "висбрекинг" с получением продукта с более низкой вязкостью, который легче транспортируется. Проделывание этого в непосредственной близости от мест добычи может иметь хороший экономический смысл, при более низкой вязкости продукт может затем легче транспортироваться на большие расстояния через трубопровод.

Настоящее изобретение направлено на способы извлечения продукта на основе керобитумов из подземных формаций (битуминозных) сланцев, основанные на разрыве и/или создании горизонтальных проходов в частях указанных формаций для увеличения их проницаемости для текучих сред на химическом модифицировании керобитумов, связанных со сланцами, с тем чтобы сделать их подвижными. Настоящее изобретение также направлено на системы для осуществления таких способов. Настоящее изобретение также направлено на способы разрыва и/или создания горизонтальных проходов в подземных сланцевых формациях и на способы химического модифицирования керобитумов на месте для обеспечения их подвижности.

Все патенты и публикации, упоминаемые здесь, тем самым включаются сюда путем ссылок до той степени, до которой они не являются несовместимыми. Будет понятно, что некоторые из описанных выше структур, функций и операций описанных выше вариантов осуществления не являются необходимыми для осуществления настоящего изобретения и являются включенными в описания просто для полноты примеров вариантов осуществления или вариантов осуществления. В дополнение к этому будет понятно, что конкретные структуры, функции и операции, приведенные выше в описанных и упоминаемых патентах и публикациях, могут быть осуществлены в сочетании с настоящим изобретением, но они не являются критически важными для его осуществления. По этой причине должно быть понятно, что настоящее изобретение может быть осуществлено иным образом, чем конкретно описано, без реального отклонения от духа и рамок настоящего изобретения, как определяет прилагаемая формула изобретения.

1. Способ извлечения продукта на основе керобитумов из подземной сланцевой формации, содержащей подземные сланцы, содержащий следующие стадии:
а) увеличение доступности для текучих сред керобитумов в подземных сланцах, содержащих неорганические компоненты в дополнение к керобитумам, включающая в себя следующие этапы:
бурение обсаженных нагнетательных скважин в подземной сланцевой формации;
доставка в нагнетательную скважину суспензии, содержащей жидкий СO2 и твердый СО2;
повышение давления в скважине посредством образования жидким СО2 и твердым СО2 в скважине сверхкритического СО2, при этом создавая высокое давление в скважине;
понижение давления в скважине с высоким давлением для получения стационарного пониженного давления, при этом соответствующим адиабатическим расширением CO2 охлаждают подземную сланцевую формацию и вызывают термические и механические напряжения внутри формации, приводящие к разрыву формации;
б) приведение в контакт керобитумов в подземных сланцах с химически активной текучей средой для создания подвижного продукта на основе керобитумов;
в) транспортировка подвижного продукта на основе керобитумов из подземной сланцевой формации с получением извлеченного продукта на основе керобитумов;

2. Способ по п.1, в котором этапы повышения давления и понижения давления повторяют до достижения равновесного давления.

3. Способ по п.1, в котором керобитум, по меньшей мере, частично отслаивают от неорганических компонентов сланцев в результате действия термических и механических напряжений.

4. Способ по п.1, в котором взрывчатые вещества добавляют к суспензии сжиженного и твердого CO2 для увеличения горизонтальных проходов и разрыва формации.

5. Способ по п.1, в котором стадия приведения в контакт керобитумов в подземных сланцах с химически активной текучей средой для создания подвижного продукта на основе керобитумов включает в себя химическую модификацию керобитумов.

6. Способ по п.5, в котором химическая модификация включает в себя, по меньшей мере, некоторый крекинг керобитумов.

7. Способ по п.1, в котором химически активная текучая среда содержит первый компонент, выбранный из группы, состоящей из двуокиси углерода (СО2), азота (N2), сжиженного природного газа (LNG), аммиака (NH3), моноокиси углерода (СО), аргона (Аr), сжиженного нефтяного газа (LPG), водорода (Н2), сероводорода (H2S), воздуха, C120 углеводородов и их сочетания; и второй компонент, выбранный из группы,
состоящей из органических кислот, неорганических кислот, пероксидов, химикалиев, образующих свободные радикалы, кислот Льюиса, гуминовых агентов деполимеризации, катализаторов диспропорционирования олефинов, химически активных газов, ферментов, микробов, плазмы, катализаторов и их сочетания.

8. Способ по п.5, в котором химическую модификацию керобитумов обеспечивают агентом для модификации, выбранным из группы, состоящей из ферментов, горячих газов, катализаторов, кислот и их сочетаний.

9. Способ по п.1, в котором стадия транспортировки подвижного продукта на основе керобитумов из подземной сланцевой формации включает в себя использование текучих сред для извлечения.

10. Способ по п.9, в котором текучую среду для извлечения выбирают из группы, состоящей из двуокиси углерода (СО2), азота (N2), сжиженного природного газа (LNG), аммиака (NH3), моноокиси углерода (СО), аргона (Аr), сжиженного нефтяного газа (LPG), водорода (Н2), сероводорода (H2S), воздуха, C1-C20 углеводородов и их сочетаний.

11. Способ по п.9, в котором текучая среда для извлечения не отличается от химически активной текучей среды.

12. Способ по п.1, в котором используют откачку для транспортировки подвижного продукта на основе керобитумов из подземной сланцевой формации.

13. Способ по п.11, в котором извлеченный продукт на основе керобитумов рафинируют с получением одного или нескольких коммерческих продуктов на основе нефти.

14. Способ по п.1, который дополнительно содержит после этапа повышения давления и до этапа понижения давления промежуточный этап приведения в контакт сланцев с нагретой текучей средой для увеличения термических напряжений, создаваемых в подземной сланцевой формации.

15. Способ разрыва подземной сланцевой формации, содержащей подземные битуминозные сланцы, включающие керобитумы и неорганические компоненты для увеличения проницаемости подземных сланцев для текучих сред, содержащий следующие стадии:
а) бурение обсаженных нагнетательных скважин в подземной сланцевой формации;
б) доставка текучих сред в плотной фазе в скважину и герметизация нагнетательной скважины;
в) повышение давления в герметичной скважине посредством предоставления возможности текучей среде в плотной фазе внутри герметичной скважины для повышения, при этом создавая высокое давление в скважине;
г) понижение давления в скважине с высоким давлением для получения стационарного состояния с пониженным давлением, при этом соответствующее адиабатическое расширение текучей среды в плотной фазе охлаждает подземную сланцевую формацию и вызывает термические и механические напряжения внутри формации, приводящие к разрыву формации.

16. Способ по п.15, в котором текучая среда в плотной фазе содержит суспензию жидкого СО2 и твердого СО2.

17. Способ по п.15, в котором стадии повышения давления и понижения давления повторяют.

18. Способ по п.15, в котором керобитум, по меньшей мере, частично отслаивают от неорганических компонентов сланцев в результате термических и механических напряжений.

19. Способ по п.15, в котором взрывчатые вещества добавляют к текучей среде в плотной фазе для увеличения горизонтальных проходов и разрыва формации.



 

Похожие патенты:
Изобретение относится к нефтяной промышленности и может быть использовано на нефтяном месторождении для обезвреживания и утилизации продуктов кислотной обработки призабойной зоны скважины.
Изобретение относится к обработке призабойных зон - ПЗ нагнетательных скважин - НС, загрязненных закачкой сточных вод. .
Изобретение относится к нефтедобывающей промышленности, в частности к способам предотвращения выноса песка и снижения водопритока в скважину с низкой пластовой температурой.
Изобретение относится к способам изоляции притока пластовых вод в скважинах нефтеводонасыщенных пластов. .
Изобретение относится к нефтегазодобывающей промышленности, в частности к улучшенному способу глушения нефтяных и газовых скважин при их капитальном ремонте. .

Изобретение относится к нефтедобывающей промышленности, в частности к способам изоляции вод в добывающих скважинах и интенсификации добычи нефти из карбонатных коллекторов.
Изобретение относится к области нефтедобычи и может быть использовано для снижения выноса песка из нефтяных и газоконденсатных скважин. .
Изобретение относится к добыче нефти и газа и направлено на снижение пожарной опасности, токсичности, а также на сохранение продуктивности скважины после ремонта
Изобретение относится к добывающей промышленности и может быть использовано для повышения отдачи залежей, разрабатываемых с использованием заводнения
Изобретение относится к сшивающим композициям и их использованию в нефтедобывающей области
Изобретение относится к разработке нефтяных месторождений и может найти применение при разработке нефтяной залежи с неоднородными по проницаемости заводненными пластами для регулирования профиля приемистости нагнетательной скважины и ограничения водопритоков в добывающей скважине путем выравнивания проницаемостной неоднородности пласта
Изобретение относится к нефтегазодобывающей промышленности, а именно к добыче нефти и газа из неоднородных обводняющихся пластов на любой стадии разработки газовых и нефтяных месторождений

Изобретение относится к нефтегазодобывающей промышленности, в частности к способам повышения продуктивности скважин и ограничения притока пластовых вод для повышения нефтеотдачи и газоотдачи пластов с использованием физико-химических методов воздействия

Изобретение относится к нефтедобывающей промышленности и может найти применение при разработке нефтяной залежи на поздней стадии, обеспечивая увеличение нефтеотдачи

Изобретение относится к нефтяной промышленности и может найти применение при оценке эффективности растворителей органических отложений на стенках нефтедобывающих скважин
Наверх