Способ краткосрочного прогноза мощных солнечных вспышек



Способ краткосрочного прогноза мощных солнечных вспышек
Способ краткосрочного прогноза мощных солнечных вспышек
Способ краткосрочного прогноза мощных солнечных вспышек
Способ краткосрочного прогноза мощных солнечных вспышек
Способ краткосрочного прогноза мощных солнечных вспышек
Способ краткосрочного прогноза мощных солнечных вспышек
Способ краткосрочного прогноза мощных солнечных вспышек
Способ краткосрочного прогноза мощных солнечных вспышек
Способ краткосрочного прогноза мощных солнечных вспышек
Способ краткосрочного прогноза мощных солнечных вспышек

 


Владельцы патента RU 2419821:

Федеральное государственное научное учреждение "Научно-исследовательский радиофизический институт" (RU)

Изобретение относится к солнечно-земной физике и может быть использовано для краткосрочного прогноза мощных солнечных вспышек. Согласно изобретению способ основан на анализе данных солнечного излучения в период, предшествующий вспышке. Особенность способа заключается в том, что измеряют данные потока радиоизлучения от всего Солнца в виде временной записи длительностью, равной сеансу наблюдений (но не менее 3 часов). Составляют совокупность ежесуточных данных измерений. Выделяют экстремальные точки и находят разности последовательных значений потока радиоизлучения в экстремальных точках. Определяют среднюю амплитуду долгопериодных (с периодом ≥20 минут) пульсаций радиоизлучения (ДПР). Сравнивают среднюю амплитуду ДПР за i-й и за i+1-й день, при превышении вдвое средней амплитуды ДПР за i+1 день по сравнению со средней амплитудой ДПР за i-й день делают вывод о том, что в течение ближайших i+2, i+3 дней произойдет мощная солнечная вспышка. Если на i+2 день средняя амплитуда по сравнению с i-м днем не уменьшится, независимо от того, произошла вспышка или нет, то делают вывод, что мощная вспышка произойдет на i+3 день. Если на i+2 день средняя амплитуда уменьшится, то делают вывод, что на i+3 день вспышки не произойдет. Способ обеспечивает повышение достоверности краткосрочного прогноза мощных солнечных вспышек. 10 ил.

 

Изобретение относится к солнечно-земной физике и предназначено для краткосрочного прогноза мощных солнечных вспышек.

Прогноз мощных солнечных вспышек актуален и имеет практическую ценность из-за многочисленных последствий, к которым они могут приводить. Мощные солнечные вспышки характеризуются мощным излучением в широком диапазоне электромагнитных волн, генерацией ускоренных заряженных частиц, формированием ударных волн в межпланетном пространстве. Эти факторы порождают разнообразные возмущения в окружающей среде. Возмущения в магнитосфере и ионосфере Земли, порожденные солнечными вспышками, вызывают многочисленные нарушения работы средств связи, навигации, слежения и оповещения на Земле, могут приводить к возникновению экстремальных ситуаций в больших энергетических системах, ускорению коррозионных процессов в нефте- и газопроводах, а также оказывают влияние на погодообразующие процессы и на здоровье людей. Мощные солнечные вспышки приводят к нарушениям функционирования систем ориентации, связи, ряда приборов на борту космических аппаратов. Поэтому перед конструкторами пилотируемых космических кораблей возникла проблема радиационной защиты экипажа.

Известно устройство предупреждения о солнечной вспышке US 3714431, предназначенное для предупреждения экипажа корабля о предстоящей солнечной вспышке, в результате которой величина интенсивности радиации может достигнуть опасного уровня. Это предупреждение актуально для обеспечения возможности космонавтам своевременно укрыться в защищенных от радиации отсеках космического корабля.

Известен метод краткосрочного предсказания солнечной вспышки, использующий текущую информацию о морфологических и магнитных свойствах активной области с привлечением метода нейронных сетей (см. "Short-Term Solar Flare Prediction Using a Sequential Supervised Learning Method" // Solar Phys. (2009), 255, 91-105. DOI 10.1007 / s 11207-009-9318-9), в котором наряду с измерением максимального градиента магнитного поля, длины нейтральной линии магнитного поля в активных областях солнечных пятен дополнительно используют метод последовательного контролируемого обучения с целью получения эволюционной информации об активных областях и введение ее в модель предсказания солнечных вспышек.

Недостатком указанного метода является то, что прогнозируется общая вспышечная активность Солнца, а не возникновение отдельных мощных событий, приводящих к существенным изменениям в магнитосфере и ионосфере Земли и их следствиям.

Наиболее близким по совокупности существенных признаков и по достигаемому техническому результату (прототипом) является изобретение «Способ краткосрочного прогноза мощных солнечных вспышек» по патенту на изобретение RU 2114449. Согласно этому изобретению способ характеризуется тем, что с пространственным разрешением не хуже 30" регистрируют полное и циркулярно поляризованное микроволновое излучение активной области и определяют вероятность возникновения мощной солнечной вспышки с заблаговременностью одни сутки. По оптическим данным измеряют гелиошироту φ и гелиодолготу λ активной области, ее протяженность l, угол наклона оси группы пятен относительно солнечного экватора Δ, величину и полярность магнитного поля в пятнах и определяют магнитный класс активной области. Используя эти данные, разбивают видимую поверхность Солнца на долготные зоны, для чего вычисляют положения границ зон с известным нормальным, не вспышечно-опасным распределением поляризации в каждой отдельной зоне. По отклонению наблюдаемого распределения поляризации от нормального в той зоне, в которой находится исследуемая активная область, определяют вспышечную опасность активной области. Для лучшего учета эффектов эволюции активной области границы долготных зон рассчитывают ежедневно.

Недостатком прототипа является то, что с помощью способа-прототипа определяется только увеличение вероятности вспышечной опасности активной области и не описано, чем может быть обосновано разделение на мощные и слабые вспышки, в то время как последние составляют большинство, что приводит к ослаблению качества прогноза. Кроме этого, в прототипе заложен в качестве опорной функции ход нормального распределения поляризации активной области, по отклонению от которого и осуществляется прогноз, в то время как количественно это отклонение не определено. В прототипе используется набор данных по 2-м параметрам радиоизлучения. При этом использование прототипа требует применения сложных дорогостоящих радиотелескопов с высоким пространственным разрешением (таких в мире всего 2) и ограничением ежесуточного времени наблюдений до 5 часов.

Задачей, на решение которой направлено заявляемое изобретение, является создание высокодостоверного метода прогнозирования мощных солнечных вспышек с применением широко распространенной аппаратуры и возможностью его применения на базе стандартно используемых приборов при сравнительно простых усовершенствованиях.

Данная задача решается с помощью технического результата, заключающегося в повышении достоверности краткосрочного прогноза мощных солнечных вспышек. Указанный технический результат реализуется с помощью стандартной аппаратуры, возможности непрерывной процедуры прогноза с использованием круглосуточных данных за счет привлечения наблюдений на радиотелескопах, расположенных в различных точках земного шара, и упрощения процедуры прогноза при применении одного параметра и количественного критерия.

Способ краткосрочного прогноза мощной солнечной вспышки основан на анализе данных солнечного излучения в период, предшествующий вспышке, и включает следующие операции. В заявляемом способе в течение заданного периода времени измеряют данные потока радиоизлучения от всего Солнца PS в виде временной записи длительностью, равной сеансу наблюдений (но не менее 3 часов) за i-й день, где i изменяется от 1 до n, составляя совокупность данных измерений (совокупность сеансов). Запись данных измерений производят ежесекундно. Эта и все последующие операции легко автоматизируются. Далее проводят текущее усреднение данных за i-й день с постоянной усреднения τ~10 мин. Таким образом, в полученной записи присутствуют только долгопериодные (Т≥20 мин) составляющие квазипериодических вариаций потока радиоизлучения. Полученную временную запись дифференцируют и выделяют экстремальные точки со значением производной, равным 0, соответствующие максимуму и минимуму исходной записи данных измерений. Находят последовательные максимумы и минимумы. Организуют ряд разностей последовательных значений потока радиоизлучения в экстремальных точках по всей совокупности данных за i-й день, состоящий из k точек. Абсолютные величины разностей этих значений потока радиоизлучения в экстремальных точках суммируют и делят на число точек экстремумов ΔI=Σ(Imax(t1)-Imin(t2))/k, где Imax(t1) и Imin(t2) - текущие максимальное и минимальное значения потока радиоизлучения, тем самым определяя среднюю амплитуду долгопериодных (с периодом ≥ 20 минут) пульсаций радиоизлучения (ДПР) за i-й день. Эта величина выражается в процентах к общему потоку радиоизлучения Солнца Ps. Все вышеупомянутые операции проводят за i+1-й и последующие дни наблюдений. Сравнивают среднюю амплитуду ДПР за i-й и за i+1-й день. При превышении приблизительно вдвое средней амплитуды ДПР за i+1-й день по сравнению со средней амплитудой ДПР за i-й, являющейся пороговым значением для предсказания мощной солнечной вспышки, делают вывод о том, что в течение ближайших i+2, i+3 дней произойдет мощная солнечная вспышка. Если на i+2-й день средняя амплитуда по сравнению с i+1-м днем не уменьшится, независимо от того произошла вспышка или нет, то делают вывод, что мощная вспышка произойдет на i+3-й день. Если на i+2-й день средняя амплитуда уменьшится до порогового значения, то делают вывод, что на i+3-й день вспышки не произойдет.

Действенность способа подтверждена по материалам многолетних наблюдений в течение последних циклов солнечной активности.

Для примера рассмотрим записи сеансов наблюдений, полученные в марте-апреле 1980 года на Горной астрономической станции Главной (Пулковской) астрономической обсерватории РАН (г.Кисловодск) и в январе 2005 года в Радиоастрономической обсерватории «Зименки» (г.Нижний Новгород). Поскольку предлагаемое изобретение в качестве параметра прогноза использует динамическую характеристику изменения средней амплитуды ДПР, важно показать, что такой параметр можно реализовать не только при максимальной (март-апрель 1980 года), но и при минимальной (январь 2005 года) длительности (три часа) сеанса наблюдений.

Для лучшей иллюстрации и понимания количественных характеристик все записи представлены как разность между текущим значением потока и средним значением потока радиоизлучения за сеанс наблюдений, выраженная в процентах к среднему значению потока.

Для подтверждения работоспособности заявляемого способа использовались записи наблюдений, проводившихся на радиотелескопе с параболической антенной диаметром 2 м и с супергетеродинным приемником, на входе которого был установлен параметрический усилитель. Применяемый радиотелескоп обладал чувствительностью до 1 сеп (солнечной единицы потока, равной 10-22 Вт/(м2Гц)) и стабильностью не хуже 0,5% за 3 часа наблюдений. Регистрировались интенсивность и наклон спектра солнечного радиоизлучения на волне 3 см. Волна радиоизлучения 3 см выбрана из тех соображений, что излучение в данном диапазоне формируется в переходной области солнечной атмосферы, характеризуемой резким изменением физических параметров (температуры и электронной концентрации) в активной области, что отражается на величине изменений интенсивности радиоизлучения. Кроме того, излучение в указанном диапазоне достаточно слабо зависит от изменений параметров среды распространения радиоволн в солнечной и земной атмосферах.

На фиг.1 представлены записи сеансов наблюдений на длине волны 3 см 30.03.1980 и 31.03.1980.

На фиг.2 показаны те же записи, усредненные по 10 минутам.

Пусть 30.03.1980 - i-й день, средняя амплитуда долгопериодных пульсаций составляет 0,35% от PS и является пороговым значением. Аналогичную процедуру проводим для 31.03.1980 (i+1 дня). За этот день средняя амплитуда долгопериодных пульсаций составляет 0,7% от PS и вдвое превышает пороговое значение. Таким образом, дни 01.04.1980 и 02.04.1980 (i+2 и i+3 дни) являются днями, в которые прогнозируется мощная солнечная вспышка. На i+2-й день (01.04.1980) средняя амплитуда по сравнению с i+1-м днем (31.03.1980) не уменьшилась, но вспышка не произошла, что позволяет сделать вывод, что мощная вспышка произойдет на i+3-й день - 02.04.1980. На i+3-й день (02.04.1980) непосредственно перед вспышкой средняя амплитуда по сравнению с i+2-м днем (01.04.1980) еще увеличилась (см. фиг.3).

После произошедшей мощной вспышки 02.04.1980 в сеансе наблюдений 03.04.1980 средняя амплитуда долгопериодных пульсаций составляет 0,5% от PS, что выше порогового значения. Таким образом, можно приступать к новой процедуре прогнозирования при наличии данных.

Суммарно величины и изменения средних амплитуд ДПР за всю процедуру прогнозирования с 30.03.1980 по 03.04.1980 приведены на фиг.4. Там же треугольниками на оси абсцисс отмечены моменты возникновения мощных вспышек, штриховой линией - пороговое значение.

Для примера реализации способа при минимальной длительности сеанса наблюдений рассмотрим записи сеансов, полученные в январе 2005 года на другом радиотелескопе с параболической антенной диаметром 1 м и супергетеродинным приемником (что характеризует универсальность применения предлагаемого изобретения). Использованы данные наблюдений на длине волны 3 см, полученные на радиотелескопе, входящем в Службу Солнца радиоастрономической обсерватории «Зименки», который обладает чувствительностью 3 сеп и стабильностью не хуже 0,5% за 3 часа наблюдений.

В данном примере для иллюстрации отобраны только характерные дни, свидетельствующие о многократности применения предлагаемого способа прогнозирования.

На фиг.5 представлена запись сеанса наблюдений 12.01.2005, усредненная по 10 минутам. Пусть 12.01.2005 - i-й день, средняя амплитуда долгопериодных пульсаций составляет 1,4% от PS и является пороговым значением (фиг.5). Аналогичную процедуру проводим для 13.01.2005 (i+1 дня). На фиг.6 представлена запись сеанса наблюдений 13.01.2005, усредненная по 10 минутам. За этот день средняя амплитуда долгопериодных пульсаций составляет 2,8% от PS, т.е. вдвое превышает пороговое значение. Таким образом, дни 14.01.2005 и 15.01.2005 (i+2 и i+3 дни) являются днями, в которые прогнозируется мощная солнечная вспышка. На i+3-й день (15.01.2005) произошла мощная вспышка.

После произошедшей мощной вспышки 15.01.2005 в сеансе наблюдений 16.01.2005 средняя амплитуда долгопериодных пульсаций составляет 3,1% от PS, что выше порогового значения (на фиг.7 представлена запись сеанса наблюдений 16.01.2005, усредненная по 10 минутам). Таким образом, можно приступать к новой процедуре прогнозирования. Если рассматривать 16.01.2005 как i+1 день, то последующие дни 17.01.2005 и 18.01.2005 (i+2 и i+3 дни) являются днями, в которые прогнозируется мощная солнечная вспышка. На i+2-й день (17.01.2005) произошла мощная вспышка.

После произошедшей мощной вспышки 17.01.2005 в сеансе наблюдений 18.01.2005 средняя амплитуда долгопериодных пульсаций составляет 4,0% от PS, что выше порогового значения (см. фиг.8, где представлена запись сеанса наблюдений 18.01.2005, усредненная по 10 минутам). Таким образом, аналогично можно приступать к новой процедуре прогнозирования. Если рассматривать 18.01.2005 как i+1 день, то последующие дни 19.01.2005 и 20.01.2005 (i+2 и i+3 дни) являются днями, в которые прогнозируется мощная солнечная вспышка. На i+2-й день (19.01.2005) произошла мощная вспышка.

Для завершения процедуры прогнозирования можно представить запись сеанса наблюдений 24.01.2005 (фиг.9), усредненную по 10 минутам, где средняя амплитуда долгопериодных пульсаций составляет 1,45% от Ps, т.е. вернулась к пороговому значению.

Суммарно величины и изменения средних амплитуд ДПР в процентах к общему потоку радиоизлучения Солнца PS за всю процедуру прогнозирования с 12.01.2005 по 24.01.2005 приведены на фиг.10. Там же треугольниками на оси абсцисс отмечены моменты возникновения мощных вспышек, штриховой линией - пороговое значение.

Способ краткосрочного прогноза мощной солнечной вспышки, основанный на анализе данных солнечного излучения в период, предшествующий вспышке, отличающийся тем, что измеряют данные потока радиоизлучения от всего Солнца в виде временной записи длительностью, равной сеансу наблюдений (но не менее 3 ч) за i-й день, где i изменяется от 1 до n, составляя совокупность ежесуточных данных измерений (совокупность сеансов), запись данных измерений производят ежесекундно, далее проводят текущее усреднение данных за i-й день с постоянной усреднения τ~10 мин, полученную временную запись дифференцируют и выделяют экстремальные точки со значением производной, равной 0, соответствующие максимуму и минимуму исходной записи данных, организуют ряд разностей последовательных значений потока радиоизлучения в экстремальных точках по всей совокупности данных за i-й день, состоящий из k точек, абсолютные значения этих разностей суммируют и делят на число точек ΔI=Σ(Imax(t1)-Imin(t2))/k, где Imax(t1) и Imin(t2) - текущие максимальное и минимальное значения потока радиоизлучения, тем самым определяя среднюю амплитуду долгопериодных (с периодом ≥20 мин) пульсаций радиоизлучения (ДПР) за i-й день и выражая ее в процентах к общему потоку радиоизлучения Солнца PS, все вышеупомянутые операции проводят за i+1-й и последующие дни наблюдений, сравнивают среднюю амплитуду ДПР за i-й и за i+1-й дни, при превышении ~ вдвое средней амплитуды ДПР за i+1 день по сравнению со средней амплитудой ДПР за i-й, являющейся пороговым значением для предсказания мощной солнечной вспышки, делают вывод о том, что в течение ближайших i+2, i+3 дней произойдет мощная солнечная вспышка, если на i+2 день средняя амплитуда по сравнению с i-м днем не уменьшится, независимо от того, произошла вспышка или нет, то делают вывод, что мощная вспышка произойдет на i+3 день, если на i+2 день средняя амплитуда уменьшится, то делают вывод, то на i+3 день вспышки не произойдет.



 

Похожие патенты:

Изобретение относится к физике ионосферы и может быть использовано для предсказания экстремальных изменений ионосферы. .

Изобретение относится к области метеорологии и может быть использовано как на метеорологических станциях, так в любом месте и в любом регионе суши, в пределах ареала обитания ногохвосток (везде, кроме пустынь и высокогорий).

Изобретение относится к области метеорологии и может быть использовано в горных районах для заблаговременного оповещения населения о начале схода селя и паводков ливневого происхождения.

Изобретение относится к области метеорологии и может быть использовано при прогнозировании погодных явлений в режиме реального времени. .

Изобретение относится к области прогноза метеорологических параметров и может быть использовано в целях обеспечения безопасности надводных и подводных морских буровых комплексов.

Изобретение относится к области метеорологии, а более конкретно к предсказанию состояния погоды в микроклиматической зоне. .

Изобретение относится к области метеорологии. .

Изобретение относится к области метеорологического приборостроения и может использоваться в составе средств обеспечения посадки боевых многоцелевых самолетов в дневное время.

Изобретение относится к метеообработке результатов измерения метеорологической величины атмосферного давления. .
Изобретение относится к метеорологии и может быть использовано на метеорологических станциях, а также в любом пункте на определенном расстоянии от метеостанции, в том числе и на подвижных объектах, например на судах и на других объектах, где необходимы прогнозы погоды.

Изобретение относится к системам связи, а именно к информационным системам для обеспечения потребителей мониторинговой информацией, и может быть использовано для контроля объекта (района, явления) и прогнозирования развития ситуации на территориях без стационарных средств мониторинга

Изобретение относится к области прогноза космической погоды, определяемой вспышечной активностью Солнца, и может быть использовано для прогноза геоэффективных последствий солнечных вспышек, в частности явлений нарушения коротковолновой радиосвязи, ухудшение определения местоположения по данным ГЛОНАСС/GPS навигации; повышение радиационной опасности для экипажей и пассажиров высотных самолетов с трассами полета в полярных областях, а также сбоям в работе бортовых космических приборов и возрастанию опасности радиационного поражения экипажей пилотируемых космических аппаратов

Изобретение относится к области солнечно-земной физики и может быть использовано для прогнозирования погодно-климатических характеристик. Сущность: наблюдают за текущей активностью Солнца. Прогнозируют изменения площади облачного покрова, находящейся в антикорреляции с числом солнечных пятен и в корреляции с всплесками полного потока лучистой энергии Солнца (солнечной постоянной). Прогнозируют температурные аномалии приземного воздуха, учитывая упомянутые солнечные данные, а также известные данные о влиянии изменений полной (общей) облачности на вариации аномалий температур приземного воздуха. Технический результат: повышение точности и увеличение заблаговременности прогнозирования температурных аномалий приземного воздуха. 1 з.п. ф-лы, 3 ил.

Изобретение относится к области метеорологии и может быть использовано для определения зон возможного обледенения воздушных судов в режиме реального времени. Согласно заявленному способу проводится регистрация фактических значений вертикального профиля температуры приземного слоя атмосферы n раз при помощи наземного температурного профилемера, который устанавливают в заданном районе наблюдения, а по данным наземных наблюдений определяют приземное значение относительной влажности воздуха, приземное значение температуры точки росы и значение высоты нижней кромки облачности. Затем осуществляют математическую обработку метеорологических данных, используя для расчетов формулу Годске или метод, который предложен в NCEP. Способ может быть использован в первую очередь на аэродромах, где отсутствует регистрация фактических значений вертикальных профилей температуры и влажности воздуха. Технический результат - повышение достоверности определения обледенения воздушных судов. 3 ил.

Изобретение относится к области метеорологии и может быть использовано для прогнозирования погоды. Сущность: выбирают из множества элементов информации о погоде, которые относятся к областям и моментам времени и которые включают в себя, по меньшей мере, температурные данные, множество наборов информации о погоде, относящихся к множеству моментов времени в течение фиксированного периода, касающихся первой области, содержащей местоположение, в котором размещается устройство использования воздуха. Решают с помощью выбранного множества наборов информации о погоде в качестве входных данных дифференциальные уравнения, выражающие информацию о погоде на основе моделей анализа, используемых для проведения моделирований погоды. Формируют множество первых наборов информации о погоде в локальной области, относящихся к множеству вторых областей, которые расположены в пределах первой области и которые меньше, чем первая область. Выбирают второй набор информации о погоде в локальной области, касающийся второй области, содержащей местоположение устройства использования воздуха, среди сформированного множества первых наборов информации о погоде в локальной области. Формируют распределение накопленной повторяемости температуры или распределение вероятности превышения температуры в течение фиксированного периода с помощью данных о температуре, содержащихся во втором наборе информации о погоде в локальной области, для того, чтобы вычислять расчетную температуру устройства использования воздуха. Технический результат: прогнозирование погоды. 3 н. и 15 з.п. ф-лы, 14 ил.

Изобретение относится к области метеорологии и может быть использовано для прогнозирования погоды. Сущность: выбирают информацию о погоде, включающую в себя данные температуры, связанную с временами и областями. Выбирают информацию о погоде, связанную с областью, содержащей местоположение, в котором размещается устройство использования воздуха, связанную с множеством моментов времени в течение некоторого периода. Посредством решения с помощью информации о погоде в качестве входных данных дифференциальных уравнений, выражающих информацию о погоде, на основе моделей метеорологического анализа, используемых для проведения моделирований погоды, формируют информацию о погоде в первой малой области, связанной с областями, меньшими области, соответствующей информации о погоде. Выбирают информацию о погоде во второй малой области относительно области, содержащей местоположение устройства использования воздуха, из информации о погоде в первой малой области. Формируют накопленное температурное распределение или распределение вероятностей превышения температуры за некоторый период посредством использования данных температуры, содержащихся в информации о погоде во второй малой области, для вычисления расчетной температуры устройства использования воздуха. Технический результат: прогнозирование погоды. 3 н. и 12 з.п. ф-лы, 14 ил.

Способ исследования изменений климата Земли заключается в том, что измерительную систему, включающую два идентичных оптических телескопа, располагают на видимой поверхности Луны. Во время движения Луны вокруг Земли оптические телескопы последовательно производят измерения энергии отраженного и рассеянного Землей солнечного излучения по всем направлениям и суммарной энергии собственного теплового излучения поверхности и атмосферы Земли. Затем определяют значение альбедо Бонда Земли, величину отклонения энергетического баланса Земли от равновесного состояния с использованием заранее известных данных солнечной постоянной. И на основании полученных данных оценивают изменения энергетического состояния Земли и степени пропускания атмосферой теплового излучения земной поверхности в космическое пространство, а также состояние климата. Технический результат - повышение точности и надежности исследования климатических изменений, происходящих на Земле. 2 н. и 5 з.п. ф-лы, 3 ил.
Наверх