Статический фурье-спектрометр



Статический фурье-спектрометр
Статический фурье-спектрометр
Статический фурье-спектрометр
Статический фурье-спектрометр
Статический фурье-спектрометр
Статический фурье-спектрометр
Статический фурье-спектрометр
Статический фурье-спектрометр

 


Владельцы патента RU 2436038:

Общество с ограниченной ответственностью "ВИНТЕЛ" (RU)

Изобретение относится к интерференционным спектральным приборам. Задачей настоящего изобретения является улучшение оптических характеристик спектрометра, в котором снижение потерь света достигается при минимальном числе оптических элементов. Фурье-спектрометр содержит входной коллиматор, оптически связанный с интерферометрическим узлом, включающим светоделитель и, по меньшей мере, два зеркала, установленные с возможностью создания интерференционной картины, локализованной в плоскости зеркал, а также устройство регистрации изображения, оптически связанное с интерферометрическим узлом с помощью проективной системы. Проективная система включает сферическое зеркало и линзовый объектив, центрированный относительно нормали к оптической поверхности зеркала, а зеркало и линзовый объектив выполнены с возможностью прохождения оптического излучения через линзовый объектив от интерферометрического узла к сферическому зеркалу с отражением от него и прохождением через тот же линзовый объектив к устройству регистрации. 4 з.п. ф-лы, 8 ил.

 

Заявляемое изобретение относится к интерференционным спектральным приборам и может быть использовано для спектральных исследований в различных областях техники.

Фурье-спектрометры широко применяются в спектральных исследованиях, благодаря высокой светосиле (выигрыш Жакино), быстродействию и возможности одновременной регистрации всего спектра излучения исследуемого диапазона. Фурье-спектрометры состоят из следующих основных функциональных блоков: системы формирования входного пучка света (далее - входного коллиматора), интерферометрического узла, проективной системы, устройства регистрации.

В динамических Фурье-спектрометрах в качестве интерферометрического узла чаще всего используют различные модификации классического интерферометра Майкельсона, состоящего из полупрозрачного зеркала (светоделителя) и двух зеркал (или ретроотражателей), одно из которых подвижное и обеспечивает переменную оптическую разность хода. При перемещении подвижного зеркала происходит периодическое изменение освещенности в плоскости регистрации, таким образом происходит модуляция каждой длины волны спектра входящего излучения, причем частота модуляции обратно пропорциональна длине волны. Метрологические параметры динамического Фурье-спектрометра (например, отношение сигнала к шуму) зависят от глубины модуляции, которая, в свою очередь, зависит от равномерности движения и параллельности перемещения зеркал интерферометрического узла. Внешние вибрации при эксплуатации Фурье-спектрометров влияют на равномерность движения зеркал, что ограничивает возможность использования динамических Фурье-спектрометров в условиях сильных вибраций.

Особенностью статических Фурье-спектрометров является реализация пространственного разложения интерференционной картины в плоскости устройства регистрации вдоль одной из координат. Преимущества статических Фурье-спектрометров перед динамическими состоят в отсутствии подвижных конструкций, линейных двигателей и сравнительно сложных систем управления, что дает возможности по созданию компактного виброустойчивого спектрометра и снижению затрат при его производстве. Глубина модуляции в статических Фурье-спектрометрах зависит от качества переноса изображения, которое определяется частотно-контрастными характеристиками проективной системы, и уменьшается с увеличением аберраций проективной системы. Уменьшение глубины модуляции ухудшает метрологические параметры статического Фурье-спектрометра (отношение сигнала к шуму). Следовательно, для статических Фурье-спектрометров улучшение метрологических параметров связано, в первую очередь, с минимизацией потерь проективной системы.

В известных статических Фурье-спектрометрах [Патент №6222627; патент №6930781; Патент US №7092101] задачи переноса изображения проективной системой, с исправлением многих видов аберраций, конструктивно решаются увеличением числа преломляющих и отражающих поверхностей в оптической схеме и использованием асферических поверхностей.

В статическом Фурье-спектрометре по [Патент №6222627] интерферометрический узел создан на основе двулучепреломлящего кристалла (называемого авторами [Патент №6222627] призмой Волластона), а проективная система включает несколько линз, расположенных последовательно. В качестве устройства регистрации изображения используется многоэлементная диодная линейка. Основным недостатком данного устройства является зависимость оптических параметров спектрометра от материала и геометрических размеров поляризационного кристалла, использующегося для получения интерференционной картины, что приводит к ограничениям по спектральному разрешению из-за зависимости разности хода от длины волны. Другим недостатком являются потери на сферические и хроматические аберрации, чему способствуют последовательно расположенные линзы в проективной системе.

В статическом Фурье-спектрометре по [патент №6930781] в качестве интерферометрического узла используется схема с поперечным сдвигом интерферирующих лучей (называемый авторами [патент №6930781] интерферометром Саньяка).

Основным недостатком данного устройства является техническая сложность качественного проецирования и фокусировки изображения, полученного интерферометрическим узлом данного типа, с минимальными потерями света. Интерференционная картина в таком случае находится на бесконечности, что требует реализации в Фурье-спектрометре проективной системы, состоящей из оптических элементов с асферической поверхностью, что снижает технологичность в производстве и увеличивает стоимость.

Наиболее близким к заявляемому изобретению по совокупности существенных признаков является устройство [Патент US №7092101], в котором интерферометрический узел, включающий светоделитель и два зеркала, создающих интерференционную картину в плоскости одного из зеркал, реализован по схеме интерферометра Майкельсона. Входной коллиматор, оптически связанный с интерферометрическим узлом, состоит из диафрагмы и объектива. Изображение указанной интерференционной картины с помощью проективной системы, оптически связанной с устройством регистрации изображения, проецируется на устройство регистрации изображения.

Основным недостатком данного устройства при исследовании излучения протяженного объекта является перенос изображения интерференционной картины проективной системой, состоящей из последовательности линзовых компонентов, на устройство регистрации. В данном устройстве снижение аберраций обеспечивается за счет увеличения числа линз, что, в свою очередь, увеличивает габариты спектрометра и производственные затраты.

Для полихроматического излучения в большинстве рассмотренных устройств задача переноса изображения интерференционной картины решается проективными системами, включающими последовательно расположенные линзовые компоненты с осевым ходом лучей. Это приводит к потерям разрешающей способности, связанным с хроматическими и сферическими аберрациями. При переносе изображения интерференционной картины, полученной для протяженного объекта, возникают потери, связанные с астигматизмом и кривизной поля. Это существенно снижает качество проектируемой на устройство регистрации изображения картины, и, следовательно, - ухудшает метрологические характеристики спектрометра. В проективных системах, состоящих только из последовательно расположенных линз, технические решения по одновременной компенсации разных видов аберраций ведут к увеличению количества линз и габаритов, что приводит к увеличению производственных затрат.

Задачей настоящего изобретения является улучшение оптических характеристик спектрометра, в котором снижение потерь света при переносе изображения на аберрации достигается при минимальном числе производимых с пониженными затратами оптических элементов.

Поставленная задача достигается тем, что статический Фурье-спектрометр содержит входной коллиматор, оптически связанный с интерферометрическим узлом, включающим светоделитель и, по меньшей мере, два зеркала, установленные с возможностью создания интерференционной картины, локализованной в плоскости зеркал, а также устройство регистрации изображения, оптически связанное с интерферометрическим узлом с помощью проективной системы с возможностью проецирования изображения указанной интерференционной картины на устройстве регистрации изображения, причем проективная система включает сферическое зеркало и линзовый объектив, центрированный относительно нормали к оптической поверхности зеркала, а зеркало и линзовый объектив выполнены с возможностью прохождения оптического излучения через линзовый объектив от интерферометрического узла к сферическому зеркалу с отражением от него и прохождением через тот же линзовый объектив к устройству регистрации.

Предложенная совокупность признаков статического Фурье-спектрометра позволяет достигать минимальных потерь излучения при высоком качестве переноса изображения интерференционной картины на устройство регистрации, благодаря устранению сферических, хроматических аберраций и астигматизма за счет наилучшей комбинации минимального числа оптических элементов проективной системы, предпочтительно сферической формы.

В проективной системе для исправления хроматических аберраций при некомпланарности плоскости интерференционной картины и плоскости изображения интерференционной картины используется составной линзовый объектив, который включает, по меньшей мере, две линзы, выполненные из разных материалов и соединенные оптическим контактом, причем одна из линз выполнена

плосковыпуклой, а соединенная с ней вторая линза выполнена в форме мениска.

Для обеспечения виброустойчивости интерферометрический узел выполнен в виде двух стеклянных прямоугольных призм, склеенных гипотенузными гранями, на одной из которых нанесено светоделительное покрытие, причем для минимизации числа используемых оптических элементов в каждой из призм на одной из катетных поверхностей выполнены зеркальные покрытия, а призмы склеены так, что грани с зеркальными покрытиями являются смежными гранями получившегося в результате склейки многогранника, причем одна из призм интерферометрического узла соединена оптическим контактом с линзовым объективом проективной системы для обеспечения одинаковых условий прохождения лучей, идущих от зеркальных граней интерферометра к сферическому зеркалу, и лучей, идущих от сферического зеркала к устройству регистрации.

Проективная система содержит компенсатор, расположенный между линзой и устройством регистрации и соединенный для обеспечения виброустойчивости с линзовым объективом оптическим контактом, причем для равенства длин оптического пути в компенсаторе и в интерферометрическом узле он выполнен из того же материала, что и призмы интерферометрического узла.

Для обеспечения компактности компенсатор выполнен в виде равнобедренной прямоугольной призмы с отражающим покрытием на гипотенузной грани, при этом устройство регистрации расположено перпендикулярно плоскости одной из зеркальных граней многогранника интерферометрического узла.

Заявляемое устройство поясняется следующими чертежами:

На фиг.1 представлена функциональная схема статического Фурье-спектрометра (разрез в плоскости объекта излучения).

На фиг.2 представлена схема Фурье-спектрометра (разрез в плоскости устройства регистрации изображения).

На фиг.3 представлен статический Фурье-спектрометр (аксонометрия).

На фиг.5 представлено формирование разности хода в интерференционном узле Фурье-спектрометра.

На фиг.6 представлены интерферирующие лучи на плоскости наблюдения интерференции.

На фиг.7 показан ход лучей в проективной системе с исправлением хроматической аберрации.

На фиг.8 показан ход лучей с исправлением полевых аберраций.

Статический Фурье-спектрометр по фиг.1-3 состоит из входного коллиматора 1, оптически связанного с интерферометрическим узлом 2, проективной системы 3 и устройства регистрации изображения 4.

Входной коллиматор 1 направляет излучение от анализируемого объекта 5 на интерферометрический узел 2. Входной коллиматор может содержать диафрагму и систему из нескольких линз. В данном случае, для обеспечения равномерности освещенности зеркал и минимально необходимого для оптического согласования количества элементов схемы, он выполнен в виде диафрагмы 6 и двух линз 7 и 8. Интерферометрический узел 2 может быть выполнен из отдельных зеркал по классической схеме интерферометра Майкельсона. Интерферометрический узел 2 по Фиг.1 реализован в виде двух прямоугольных равнобедренных призм 9 и 10, выполненных из одного материала (с одинаковым значением показателя преломления n) и склеенных в целях повышения виброустойчивости и минимизации затрат в производстве. По Фиг.2 на одной из гипотенузных граней 16 нанесено отражающее покрытие с коэффициентом отражения, близким к 50% (предпочтительно, в диапазоне от 40% до 60%), с образованием светоделителя, причем у каждой из призм 9 и 10 на их катетных поверхностях 17 и 18 выполнены зеркальные покрытия (предпочтительно, с коэффициентом отражения более 95%). В других исполнениях возможно использование отдельных юстируемых зеркал, расположенных в непосредственной близости от катетных поверхностей призм, однако реализация зеркальных покрытий на указанных поверхностях обеспечивает вибростойкость и минимизацию производственных затрат. Интерферометрический узел 2 и проективная система 3 оптически согласованы так, что направленный в интерферометрический узел 2 световой пучок разделяется на грани 16, отражается от зеркальных поверхностей 17 и 18 призм 9 и 10 и затем попадает на линзовый объектив 11.

Проективная система 3 включает сферическое зеркало 12, позволяющее снизить потери света на хроматические аберрации, линзовый объектив 11 (дублет), и компенсатор 13 (фиг.3), расположенный между линзовым объективом 11 и устройством регистрации изображения 4. Компенсатор 13, соединенный с линзовым объективом 11 оптическим контактом, выполнен из того же материала, что и призмы 9 и 10 интерферометрического узла 2.

Устройство регистрации 4 выполнено в виде многоэлементного приемника (например, CCD или CMOS), что позволяет улучшить энергетические и метрологические параметры регистрации, в том числе сигнал/шум, порог детектирования и время измерения. В других исполнениях устройство регистрации изображения 4 может быть выполнено в виде сканирующего фотоприемника, например, видикона.

Компенсатор 13 (фиг.3) выполнен в виде прямоугольной призмы с зеркальным покрытием на гипотенузной грани 19 и установлен на линзовом объективе 11 так, что световой пучок, отраженный от зеркала 12 и прошедший обратно сквозь линзовый объектив 11, входит в первую катетную грань призменного компенсатора 13, отражается и от гипотенузной грани выходит на устройство регистрации изображения 4. Для унификации деталей и повышения технологичности сборки компенсатор 13 выполнен в виде призмы, идентичной одной из призм 9 или 10 интерферометрического узла 2, таким образом причем длина оптического пути в компенсаторе 13 равна оптическому пути в призмах 9 и 10 интерферометрического узла 2.

Линзовый объектив 11 (фиг.2) проективной системы 3 соединен оптическим контактом с интерферометрическим узлом 2, что повышает виброустойчивость такой системы и исключает необходимость использования в устройстве юстируемых элементов, обеспечивая его компактность. Линзовый объектив 11 выполнен из двух линз, одна из которых плосковыпуклая 14, а другая 15 - выполнена в форме мениска и соединена с первой, причем радиус кривизны вогнутой поверхности линзы 15 совпадает с радиусом кривизны выпуклой поверхности плосковыпуклой линзы 14, что позволяет исправить сферические аберрации. Линзы 14 и 15 выполнены из разных сортов стекол, с отличающимися показателями преломления n для исправления хроматических аберраций положения, причем линза 14 выполнена из стекла с более высоким значением показателя преломления n. Соединение линз 14 и 15 в результате склейки снижает потери света на поверхностях оптического контакта и упрощает конструктивную задачу крепления линзового объектива 11.

Для получения интерференционной картины призмы 9, 10 интерферометрического узла 2 (фиг.4) развернуты относительно друг друга вокруг оси, перпендикулярной плоскости склейки, на угол α и склеены так, что для проходящих в интерференционном узле 2 лучей возникает переменная оптическая разность хода по одной из координат в плоскости катетной грани, в результате чего в плоскостях зеркальных поверхностей 17 и 18 призм 9 и 10 наблюдается интерференционная картина в виде последовательности темных и светлых полос. Грани с зеркальными покрытиями 17 и 18 (фиг.4) являются смежными гранями получившегося в результате склейки многогранника.

Устройство функционирует следующим образом. Оптическое излучение от анализируемого объекта 5 попадает в статический Фурье-спектрометр через входной коллиматор 1, согласованный по апертуре с проективной системой 3. Входной коллиматор преобразует излучение от каждой точки объекта 5 в близкий к параллельному пучок и направляет полученный пучок в интерферометрический узел 2, обеспечивая равномерность освещенности рабочей площади зеркальных поверхностей призм 9 и 10 интерферометрического узла 2. На светоделителе 16 (фиг.5) происходит разделение пучка. Каждая часть разделенного пучка проходит по своему пути с отражением от зеркальных граней 17 и 18. Из-за переменной разности хода ΔI(х) возникает интерференция лучей и формирование двухмерной интерференционной картины в плоскостях зеркальных граней 17 и 18 призм 9 и 10. С помощью проективной системы 3, оптически согласованной с входным коллиматором 1 и интерференционным узлом 2, а также с помощью компенсатора 13, изображение полученной двухмерной интерференционной картины проецируется на устройство регистрации изображения 4.

Спектральное разрешение статического Фурье-спектрометра определяется качеством переноса интерференционной картины и пространственной частотой N разрешаемых интерференционных полос ее изображения на устройстве регистрации 4 (фиг.6). Разность хода ΔI линейно зависит от координаты x вдоль интерференционной картины в плоскости зеркальных поверхностей призм 9 и 10, а также от угла взаимного разворота α. В диапазоне малых углов зависимость выражается формулой ΔI(x)=2αx, т.е. с увеличением угла α разворота призм 9, 10 разность хода лучей ΔI увеличивается. На фиг.6 в каждой точке Р плоскости интерференционной картины (например, зеркальной поверхности 17 призмы 9) для двух интерферирующих лучей L1 и L2 под углом α друг к другу приращение разности хода dΔI меняется от полосы к полосе вдоль линии пересечения волновых поверхностей V1, V2 (линия пересечения волновых поверхностей перпендикулярна плоскости фиг.6). Пространственная частота интерференционных полос N для фиксированного линейного поля интерференции для малых углов по формуле N=2α/λ уменьшается с увеличением длины волны λ излучения от объекта 5 и определяется углом α при фиксированной длине волны λ. Так на длине волны излучения λ=1 мкм при использовании прямоугольных призм 9, 10 с гипотенузной гранью размером 40 мм величина угла поворота призм α относительно друг друга составляет порядка 20 угловых минут, при этом количество интерференционных полос составляет 200 в линейном поле устройства регистрации размером 20×20 мм.

Отсутствие хроматических аберраций увеличения обеспечивается использованием в составе проективной системы 3 отражающего элемента, т.е. сферического зеркала 12. Хроматические аберрации положения, возникающие в случае отступления от симметрии системы, например смещения плоскости регистрации М′А′ изображения (фиг.7) на расстояние h от плоскости формирования интерференционной картины МА, исправляются использованием склейки линз 14 и 15 из разных сортов стекла. При этом линза 14 выполнена из стекла с более высоким значением показателя преломления n, чем линза 15. Лучи, выходящие из точки А интерференционной картины, расположенной в плоскости зеркальной грани 17 призмы 9, в результате преломления расходятся в зависимости от длины волны λ на соответствующий угол θ. После отражения от сферического зеркала 12 лучи проходят через тот же линзовый объектив 11, в результате происходит компенсация первоначального отклонения на угол θ. Лучи λ1 и λ2 собираются в точке А′ плоскости регистрации изображения. Устранение хроматической аберрации положения обеспечивает лучшую частотно-контрастную характеристику проективной системы, следовательно, - лучшие метрологические параметры (разрешение, отношение сигнала к шуму) статического Фурье-спектрометра.

Исправление монохроматических аберраций обеспечивается оптическим согласованием интерференционного узла 2 и проективной системы 3. Объектом переноса является сформированная на зеркальных гранях призм 9 и 10 интерференционная картина. В проективной системе 3 использование сферического зеркала 12 позволяет изображать объект, размещенный в центре его кривизны, без сферической аберрации при любых апертурных углах пучка. Использование линзового объектива 11, в качестве корректирующего элемента оптической схемы проективной системы 3, обеспечивает устранение аберраций кривизны поля изображения в меридиональном сечении для точек интерференционной картины вне оптической оси OO1 (фиг.8) (например В и В′). Использование составного линзового объектива 11 из двух линз 14 15 с различными показателями преломления позволяет скомпенсировать некомпланарность зеркальной плоскости 17 и плоскости регистрации 20 M′B′, выраженной смещением h. Для точек интерференционной картины, сформированной в плоскости зеркальной поверхности 17, такое решение позволяет исправить астигматизм, возникающий для случаев точки В, лежащей вне оптической оси OO1. Это, в свою очередь, повышает качество изображения В' в поле регистрации 20 M′B′. Для унификации используемых оптических элементов и компактности размещения устройство регистрации изображения 4 располагается перпендикулярно плоскости зеркальной поверхности 17 призмы 9, и изображение интерференционной картины переносится на устройство регистрации 4 при помощи компенсатора 13.

Заявляемое изобретение обеспечивает высокие значения светосилы и глубины модуляции при получении двухмерной интерференционной картины, перенос ее изображения с минимальными потерями при наилучшей комбинации минимального числа используемых оптических элементов, благодаря конструктивной реализации интерферометрического узла и согласованной проективной системе с компенсатором, соединенных оптическим контактом в единый модуль.

1. Статический Фурье-спектрометр, содержащий входной коллиматор, оптически связанный с интерферометрическим узлом, включающим светоделитель, и по меньшей мере, два зеркала, установленные с возможностью создания интерференционной картины, локализованной в плоскости зеркал, а также устройство регистрации, оптически связанное с интерферометрическим узлом с помощью проективной системы, выполненной с возможностью проецирования на устройство регистрации изображения указанной интерференционной картины, отличающийся тем, что проективная система включает сферическое зеркало и линзовый объектив, центрированный относительно нормали к оптической поверхности зеркала, причем зеркало и линзовый объектив выполнены с возможностью прохождения оптического излучения через линзовый объектив от интерферометрического узла к сферическому зеркалу с отражением от него и прохождением через тот же линзовый объектив к устройству регистрации.

2. Фурье-спектрометр по п.1, отличающийся тем, что линзовый объектив включает, по меньшей мере, две линзы, выполненные из разных материалов и соединенные оптическим контактом, причем одна из линз выполнена плоско-выпуклой, а соединенная с ней вторая линза выполнена в форме мениска.

3. Фурье-спектрометр по п.1, отличающийся тем, что интерферометрический узел выполнен в виде двух стеклянных прямоугольных призм, склеенных гипотенузными гранями, на одной из которых нанесено светоделительное покрытие, причем в каждой из призм на одной из катетных поверхностей выполнены зеркала, а призмы склеены так, что грани с зеркалами являются смежными гранями получившегося в результате склейки многогранника, причем одна из призм интерферометрического узла соединена оптическим контактом с линзовым объективом проективной системы.

4. Фурье-спектрометр по п.3, отличающийся тем, что проективная система содержит компенсатор, расположенный между линзовым объективом и устройством регистрации и соединенный с линзовым объективом оптическим контактом, причем компенсатор выполнен из того же материала, что и призмы интерферометрического узла, так что при этом длина оптического пути в компенсаторе равна оптическому пути в интерферометрическом узле.

5. Фурье-спектрометр по п.4, отличающийся тем, что компенсатор выполнен в виде прямоугольной призмы с отражающим покрытием на гипотенузной грани.



 

Похожие патенты:

Изобретение относится к области геофизики и может быть использовано для измерения микродеформаций земной коры и изучения пространственно-временной структуры геофизических полей инфразвукового и звукового диапазонов.

Изобретение относится к контрольно-измерительной технике, а именно к интерферометрам Физо для контроля формы поверхности оптических деталей. .

Изобретение относится к способу компьютерного определения показателей плотности прошивки - числа петель на единицу площади махровых текстильных изделий, заключающемуся в формировании пробы и подсчете числа петель по вертикали - длине и горизонтали - ширине, отличающемуся тем, что производят сканирование пробы, получают ее цифровое изображение, на данном цифровом изображении выделяют исследуемую область в виде квадрата, сторона которого соизмерима с шириной петельного ряда и шириной петельного столбика, на главной диагонали изображения задают начальную точку и перемещают выделенную область последовательно в вертикальном и горизонтальном направлениях, формируют два массива значений функции входного сигнала яркости изображения для каждого пикселя, находят автокорреляционную функцию данных массивов, при достижении первого локального максимума автокорреляционной функции подсчитывают число пикселей в выбранном направлении, соответствующих по яркости количеству петель, вычисляют количество петель, на основании полученных значений числа петель по вертикали - длине и горизонтали - ширине определяют плотность прошивки - число петель на единицу площади по известной зависимости.

Изобретение относится к измерительной технике в области спектрометрии и представляет собой быстродействующий измеритель длины волны лазерного излучения, распространяющегося по волоконному световоду, построенный на основе двухканального интерферометра Майкельсона.

Изобретение относится к измерительной технике, а именно к устройствам для измерения деформации твердых тел оптическими средствами. .

Изобретение относится к оптическим диагностическим приборам, предназначенным для измерения распределения концентрации и размеров наночастиц в жидкостях. .

Изобретение относится к области клепки и может быть использовано в авиастроении. .

Изобретение относится к области измерительной техники, а именно к оптическим устройствам для измерения малых перемещений поверхностей объектов контроля, основанным на применении оптических интерференционных методов.

Изобретение относится к оптико-электронному приборостроению и может быть использовано в измерительных приборах, предназначенных для регистрации углового движения зеркала относительного двух ортогональных осей

Изобретение относится к волоконно-оптической измерительной технике и может быть использовано для измерения давления, температуры, деформации, перемещения

Изобретение относится к телевизионной технике и преимущественно может быть использовано для анализа интерферограмм оптических изделий, выполняемого в телевизионных системах

Изобретение относится к формированию изображения с использованием оптической когерентной томографии в Фурье-области

Изобретение относится к области интерференционной оптики и может быть использовано, например, в микроскопах

Изобретение относится к области определения механических свойств материалов путем приложения заданных нагрузок

Изобретение относится к измерительной технике и, более конкретно, к интерференционным датчикам температуры

Изобретение относится к оптическим методам контроля слоев наноразмерной толщины в инфракрасном (ИК) излучении и может быть использовано как в физико-химических исследованиях динамики роста переходного слоя на проводящей поверхности, так и в технологических процессах для контроля толщины и однородности тонкослойных покрытий металлизированных изделий и полупроводниковых подложек

Изобретение относится к измерительной технике, а именно к профилометрии, топографии
Наверх