Способ ультразвукового контроля

Использование: для ультразвукового контроля материалов и изделий. Сущность заключается в том, что в изделии зондирующим сигналом возбуждают ультразвуковые колебания, принимают эхо-сигналы и накапливают их в накопителе, а по результату накопления импульсов определяют параметры контролируемого изделия, при этом в изделие излучают 2N, где N - целое число и больше нуля, фазоманипулированных комплиментарными кодами Голея импульсов, причем первые N радиоимпульсов модулируют первой последовательностью Голея, вторые N радиоимпульсов модулируют второй последовательностью Голея, а каждый радиоимпульс принимаемого сигнала перед накоплением оптимально фильтруют. Технический результат: повышение чувствительности и достоверности контроля. 2 ил.

 

Изобретение относится к области неразрушающих испытаний ультразвуковыми методами и может быть использовано в различных отраслях машиностроения для контроля материалов и изделий, преимущественно крупногабаритных и с большим затуханием ультразвука.

Известен способ ультразвукового контроля изделий (см. Ультразвук. Маленькая энциклопедия. Глав. ред. И.П.Голямина. - М.: Советская энциклопедия, 1979. С.105), заключающийся в том, что в изделии возбуждают короткий акустический импульс, принимают отраженные от изделия эхо-сигналы, преобразуют их в электрический сигнал, по которому определяют параметры контролируемого изделия.

Недостатком известного способа является низкая чувствительность контроля, определяемая максимальным значением амплитуды зондирующего сигнала, связанной, в свою очередь, с ограничениями конструктивного и другого характера.

Известен способ ультразвукового контроля изделий [Аксенов В.П. Применение радиолокационных методов оптимального обнаружения при ультразвуковом эхо-контроле. / Дефектоскопия, №2, 1982, с.67-74], заключающийся в том, что в контролируемом изделии возбуждают сложномодулированный зондирующий сигнал, принимают отраженные от изделия эхо-сигналы, преобразуют их в последовательность электрических сложномодулированных импульсов, каждый из импульсов оптимально фильтруют, а по результату оптимальной фильтрации определяют параметры контролируемого изделия.

Недостатком описанного способа является низкая чувствительность и достоверность контроля, связанная с тем, что с ростом затухания ультразвука одновременно проявляется сильная зависимость коэффициента затухания от частоты. Последнее приводит к искажению формы эхо-сигналов и, как следствие, - нарушению оптимальности фильтрации, существенному искажению формы сигнала на выходе оптимального фильтра, уменьшению чувствительности и достоверности контроля.

Наиболее близким по технической сущности к изобретению является способ ультразвукового контроля, принимаемый в качестве прототипа, описанный в [Неразрушающий контроль. В 5 кн. Кн.5 Интроскопия и автоматизация неразрушающего контроля: Практическое пособие / В.В.Сухоруков, Э.И.Вайнберг, Р.-И.Ю.Кажис, А.А.Абакумов; под ред. В.В.Сухорукова. - М.: Высш. шк., 1993, с.112-113] и заключающийся в том, что в изделии возбуждают ультразвуковые колебания периодической последовательностью импульсов, принимают отраженные от изделия эхо-сигналы, преобразуют их в последовательность электрических импульсов и накапливают, а по результату накопления импульсов определяют параметры контролируемого изделия.

Недостатком такого способа является низкая чувствительность и достоверность контроля, ограничиваемая потенциально небольшой энергией накапливаемых импульсов.

Техническая задача предлагаемого способа заключается в повышении чувствительности и достоверности контроля.

Эта задача достигается тем, что в известном способе ультразвукового контроля, заключающемся в том, что в изделии зондирующим сигналом возбуждают ультразвуковые колебания, принимают эхо-сигналы и накапливают их в накопителе, а по результату накопления импульсов определяют параметры контролируемого изделия, в изделие излучают 2N, где N целое число и больше нуля, фазоманипулированных комплиментарными кодами Голлея импульсов, причем первые N радиоимпульсов модулируют первой последовательностью Голлея, вторые N радиоимпульсов модулируют второй последовательностью Голлея, а каждый радиоимпульс принимаемого сигнала перед накоплением оптимально фильтруют.

Сущность изобретения поясняется чертежами, где на фиг.1 представлена структурная схема устройства, реализующего предложенный способ; на фиг.2 изображены а) последовательность комплиментарных кодов Голлея; б) последовательность зондирующих фазоманипулированных радиоимпульсов; в) последовательность эхо-сигналов; г) - ж) эхо-сигналы на выходе накопителя после соответственно одного, двух, трех и четырех суммирований.

Способ ультразвукового контроля толщины изделий заключается в том, что в контролируемом изделии зондирующим сигналом, представляющим собой последовательность фазоманипулированных комплиментарными кодами Голлея радиоимпульсов, возбуждают ультразвуковые колебания, принимают эхо-сигналы, каждый принятый эхо-сигнал оптимально фильтруют, после чего все автокорреляционные функции синфазно суммируют в накопителе.

В традиционной ультразвуковой дефектоскопии в качестве зондирующего сигнала используется периодическая последовательность одиночных импульсов ударного возбуждения. Получаемая при этом дефектограмма сравнительно легко интерпретируется, предоставляя информацию о распределении затухания ультразвуковых волн, наличии и расположении различных акустических неоднородностей. Вместе с тем низкая чувствительность традиционного метода ультразвукового эхо-контроля обусловлена низкой энергией импульсов ударного возбуждения.

Одним из наиболее перспективных путей повышения чувствительности УЗ контроля при сохранении высокой разрешающей способности является использование сложномодулированных псевдослучайных, шумоподобных зондирующих сигналов с большой энергией. Под сложномодулированным сигналом в этих случаях понимается пачка радиоимпульсов прямоугольной формы, фаза несущей которых изменяется по закону выбранной кодовой последовательности. В корреляционных дефектоскопах со сложномодулированным зондирующим сигналом для получения традиционной дефектограммы формируется и излучается в контролируемое изделие сложномодулированный зондирующий ультразвуковой сигнал, принимается и регистрируются отраженные от акустических неоднородностей эхо-сигналы, с помощью коррелятора вычисляется взаимно корреляционная функция зарегистрированного и опорного сигналов, которая и является дефектограммой контролируемого изделия. За счет увеличения энергии зондирующего сигнала при одинаковом пространственном разрешении традиционного и корреляционного дефектоскопов абсолютная чувствительность (или динамический диапазон) последнего (при прочих равных условиях) будет больше на 201g(B1/2) дБ, где В - база зондирующего сигнала.

В качестве кодовой последовательности зондирующих сигналов чаще всего применяют М-последовательности Хаффмена. Во всех случаях автокорреляционная функция имеет основной лепесток с амплитудой, равной числу импульсов К в пачке зондирующего сигнала, и боковые лепестки. При использовании случайных последовательностей наибольшие боковые лепестки имеют амплитуду порядка В1/2, что приводит к существенным искажениям дефектограммы. Лучшие результаты достигаются, если в качестве кодовых последовательностей зондирующих сигналов применяются комплиментарные последовательности Голлея, которые представляют собой 2N, т.е. пару кодовых последовательностей одинаковой длины, при этом N является целом числом и больше нуля. Автокорреляционная функция каждой из этих последовательностей имеет основной лепесток максимальной амплитуды и значительные боковые лепестки. Расположенные аналогично друг другу боковые лепестки разных последовательностей имеют одинаковую амплитуду, но противоположный знак. В результате суммарная автокорреляционная функция имеет удвоенный по амплитуде основной лепесток и не имеет боковых лепестков.

Для реализации преимуществ, связанных с применением комплиментарных кодов Голлея, последовательно формируют N первых зондирующих сигналов, фазоманипулированных первой последовательностью Голлея, регистрируют последовательность N первых эхо-сигналов, каждый эхо-сигнал корреляционно обрабатывают, осуществляя оптимальную фильтрацию, и накапливают в суммирующем накопителе, затем формируют N вторых зондирующих сигналов, фазоманипулированных второй последовательностью Голлея, регистрируют последовательность N вторых эхо-сигналов, каждый эхо-сигнал корреляционно обрабатывают, осуществляя оптимальную фильтрацию, и также накапливают в суммирующем накопителе. Таким образом, после изучения 2N зондирующих сигналов в накопителе оказываются оптимально просуммированными 2N автокорреляционных функций эхо-сигналов, что обеспечивает за счет применения сложномодулированных сигналов и оптимальной фильтрации высокую чувствительность и за счет использования в качестве модулирующих последовательностей комплиментарных кодов Голлея отсутствие боковых лепестков у автокорреляционных функций эхо-сигналов и соответственно высокую достоверность УЗ контроля.

Устройство, реализующее заявляемый способ, содержит электроакустически последовательно соединенные синхронизатор 1, генератор 2 зондирующих импульсов, усилитель 3 мощности, излучающий электроакустический преобразователь 4, приемный электроакустический преобразователь 5, управляемый оптимальный фильтр 6, накопитель 7, второй вход которого объединен с вторым входом управляемого оптимального фильтра 6 и соединен с вторым выходом синхронизатора и индикатора 8. В качестве индикатора 8 может быть использован электроннолучевой осциллограф и контролируемое изделие 9.

Устройство для осуществления способа работает следующим образом.

Запускаемый импульсом, поступающим с первого выхода синхронизатора 1, генератор 2 кодовой последовательности вырабатывает модулирующие импульсные последовательности Голлея (см. фиг.2а), поступающие на формирователь 3 зондирующих импульсов, который, в свою очередь, вырабатывает поступающую на вход усилителя 4 мощности последовательность зондирующих радиоимпульсных сигналов, форма которых показана на фиг.2б. Для примера выбрана и показана последовательность зондирующих импульсов, состоящая из 4 фазоманипулированных сигналов, где первые два сигнала модулированы первой последовательностью Голлея, а вторые два - соответственно второй последовательностью. Таким образом, цикл работы устройства реализуется за четыре такта. Усилитель 3 мощности возбуждает излучающий электроакустический преобразователь 5. Принятые из контролируемого изделия ультразвуковые эхо-сигналы после обратного электроакустического преобразования приемным преобразователем 6 и усиления в усилителе 7 поступают на вход управляемого оптимального фильтра 8 (фиг. 2в). Работа оптимального фильтра 8 организована таким образом, что он в зависимости от значения управляющего сигнала на 2 входе, поступающего с 3 выхода синхронизатора 1, оказывается согласованным на протяжении первых двух тактов со сложномодулированным эхо-сигналом, фазоманипулированным первой последовательностью Голлея, и на протяжении последних двух тактов - со второй последовательностью Голлея. Работа накопителя 9, управляемая импульсами с 2 выхода синхронизатора 1, циклически возобновляется в моменты времени, отмеченные "↓" на фиг.2г. Форма сигнала на выходе накопителя по окончании первого, второго, третьего и четвертого тактов показана соответственно на фиг.2г-фиг.2ж. Принимая во внимание, что амплитуда сигнала на выходе оптимального фильтра пропорциональна энергии входного сигнала, в результате описанного выше процесса обработки эхо-сигнала суммарная амплитуда сигнала на выходе накопителя оказывается пропорциональной суммарной энергии всех радиоимпульсов.

Способ ультразвукового контроля, заключающийся в том, что в изделии зондирующим сигналом возбуждают ультразвуковые колебания, принимают эхо-сигналы и накапливают их в накопителе, а по результату накопления импульсов определяют параметры контролируемого изделия, отличающийся тем, что в изделие излучают 2N, где N - целое число и больше нуля, фазоманипулированных комплиментарными кодами Голея импульсов, причем первые N радиоимпульсов модулируют первой последовательностью Голея, вторые N радиоимпульсов модулируют второй последовательностью Голея, а каждый радиоимпульс принимаемого сигнала перед накоплением оптимально фильтруют.



 

Похожие патенты:

Изобретение относится к неразрушающему контролю железнодорожных рельсовых накладок ультразвуковым методом и может быть использовано для обнаружения дефектов в виде поперечных трещин в головках накладок.

Изобретение относится к горной промышленности и предназначено для контроля сцепления анкерной крепи с массивом горных пород, необходимого для поддержания ею пород в устойчивом состоянии.

Изобретение относится к области измерений, предназначено для неразрушающих испытаний ультразвуковыми методами и может быть использовано в различных отраслях машиностроения для ультразвукового контроля структуры материала, в частности для определения формы графитовых включений в чугуне.

Изобретение относится к области неразрушающего контроля строительных конструкций, преимущественно гидротехнических и гидромелиоративных сооружений, и может быть использовано для определения модуля упругости бетона конструкций в процессе их строительства, реконструкции и эксплуатации.

Изобретение относится к неразрушающему контролю материалов и может быть использовано как при ультразвуковой дефектоскопии рельсов, так и в других отраслях. .

Изобретение относится к контрольно-измерительным устройствам для проверки состояния железнодорожного полотна и может быть использовано для обнаружения и оценки степени коррозионного повреждения подошв эксплуатируемых рельсов с использованием ультразвуковых методов исследования.

Изобретение относится к контрольно-измерительной технике, в частности к средствам неразрушающего контроля изделий из ферромагнитного материала, и может быть использовано в машиностроении и других отраслях промышленности для определения напряженно-деформированного состояния металла.

Изобретение относится к области ультразвукового контроля дефектов в твердых телах и может использоваться для обнаружения дефектов в рельсах преимущественно железнодорожного транспорта и метрополитена при их высокоскоростном контроле.

Изобретение относится к технической физике и может быть использовано для определения свойств и кристаллической структуры материалов изделий по их виброакустическим характеристикам

Изобретение относится к области неразрушающего контроля и может быть применено для ультразвукового контроля листового, сортового проката и труб

Изобретение относится к контрольно-измерительной технике, а именно к способам обнаружения дефектов в трубопроводах, и может быть использовано как для трубопроводных систем водоснабжения, так и магистральных трубопроводов для транспортировки углеводородов, проложенных не только по суше, но и на дне водоемов

Изобретение относится к области неразрушающего контроля и может быть использовано при ультразвуковом (УЗ) контроле качества клеевых соединений, применяемых при сборке автомобилей

Изобретение относится к областям электроакустики и радиотехники и может быть использовано в качестве способа регистрации неоднородностей внутренних структур непрозрачных объектов, например, для прочтения защищенных специальным покрытием бумажных документов, в том числе для прочтения лотерейных билетов без нарушения защитных слоев, которые приобретатель должен правильно стереть

Изобретение относится к областям электроакустики и радиотехники и может быть использовано в качестве устройства для послойной визуализации неоднородностей внутренних структур непрозрачных объектов, например, для регистрации топологии многослойных сверхбольших интегральных схем (СБИС)

Изобретение относится к области неразрушающего контроля материалов, изделий и сварных соединений

Изобретение относится к шкворням оси, которые, например, используются в области железнодорожной техники, в частности к контролю (или проверке) таких шкворней посредством неразрушающей технологии (неразрушающих технологий)
Наверх