Способ получения титансодержащего продукта


 


Владельцы патента RU 2445270:

Учреждение Российской академии наук Институт химии и технологии редких элементов и минерального сырья им. И.В. Тананаева Кольского научного центра РАН (ИХТРЭМС КНЦ РАН) (RU)

Изобретение может быть использовано в производстве титансодержащих пигментов и сорбентов. В сернокислый раствор титана с концентрацией 50-100 г/л TiO2 и кислотным фактором 1,25-2,5 вводят 5-20% раствор аммиака до обеспечения кислотного фактора 0,2-0,5 с образованием дисперсии гидроксида титана. Полученную дисперсию нагревают до 50-70°С, выдерживают в течение 1,0-1,5 ч и вводят в раствор осаждающего реагента с формированием титансодержащего осадка в виде микрогранул. В качестве раствора осаждающего реагента берут 20-25% раствор аммиака или 50-70% раствор фосфорной кислоты. Образовавшийся титансодержащий осадок отделяют и промывают водой до рН 2-5 и подвергают термообработке. Термообработку ведут при температуре 60-100°C с получением титансодержащего сорбента или при температуре 680-820°C с получением титансодержащего пигмента. Изобретение позволяет получить в рамках единой технологии наноразмерные титансодержащие продукты в виде пигментов со следующими характеристиками: белизна - 97,5-98,5%, разбеливающая способность - 800-1200 усл.ед., укрывистость - 39,5-60,1 г/м2, а также сорбенты с сорбционной емкостью 48-155 мг/г по Sr2+. 2 з.п. ф-лы, 11 пр.

 

Изобретение относится к химической технологии получения титансодержащих продуктов, используемых в качестве пигментов, в том числе пигментов-наполнителей, и сорбентов.

При синтезе конкурентоспособных неорганических материалов, в частности пигментов и сорбентов, целесообразно использование единой технологии с получением продуктов, обладающих высокими функциональными свойствами. В существующих способах получения пигментов и сорбентов используемые приемы не обеспечивают должного регулирования химического синтеза, что не позволяет получать конечные продукты с заданными характеристиками. На решение этой проблемы направлено настоящее изобретение.

Известен способ получения титансодержащего продукта (см. а.с. 652119 СССР, МКИ2 C01G 23/04, C09C 1/36, 1979), включающий термогидролиз сернокислого раствора сульфата титанила и аммония с весовым соотношением сульфата аммония и диоксида титана 1,9-5,2:1,0 при концентрации сульфата титанила и аммония по TiO2 70-140 г/л с получением осадка гидроксида титана, его отделение фильтрацией, промывку и прокаливание при 950°С. Получаемый продукт в виде диоксида титана имеет следующие пигментные свойства: белизна 87-90%, разбеливающая способность 250-300 усл.ед. и укрывистость 80-95 г/м2.

Недостатками данного способа являются низкие пигментные свойства получаемого продукта, что не позволяет использовать его в качестве белого пигментного компонента. Кроме того, данный способ не позволяет получать титансодержащий продукт, обладающий сорбционными свойствами, в результате спекания частиц в процессе высокотемпературной обработки.

Известен также принятый за прототип способ получения титансодержащего продукта (см. а.с. 643520 СССР, МКИ2 C09C 1/36, 1979), включающий введение в раствор сульфата титанила и аммония раствора аммиака с концентрацией 16-22% NH3 с образованием дисперсии гидроксида титана, содержащей 135-150 г/л TiO2, отделение титансодержащего осадка и его термообработку при 850-870°C с получением пигментного диоксида титана. Полученный продукт имеет следующие пигментные свойства: белизна 94-98%, разбеливающая способность 870-1050 усл.ед., укрывистость 43,0-50,4 г/м2. Извлечение ТiO2 в готовый продукт составляет 100%.

К недостаткам известного способа относится то, что титансодержащий продукт, полученный в условиях нерегулируемого синтеза, обладает недостаточно высокими пигментными свойствами, что обусловлено низкой удельной поверхностью его крупнодисперсных частиц. Полученный продукт имеет низкие сорбционные свойства.

Настоящее изобретение направлено на достижение технического результата, заключающегося в получении в рамках единой технологии наноразмерных титансодержащих продуктов в виде пигментов и сорбентов с высокими пигментными и сорбционными свойствами.

Технический результат достигается тем, что в способе получения титансодержащего продукта, включающем введение в сернокислый раствор титана раствора аммиака с образованием дисперсии гидроксида титана, отделение титансодержащего осадка и его термообработку, согласно изобретению введение раствора аммиака в сернокислый раствор титана осуществляют до обеспечения кислотного фактора 0,2-0,5, полученную дисперсию гидроксида титана нагревают до 50-70°C, выдерживают в течение 1,0-1,5 ч и вводят в раствор осаждающего реагента, в качестве которого берут 20-25% раствор аммиака или 50-70% раствор фосфорной кислоты, с формированием титансодержащего осадка в виде микрогранул, который после отделения промывают водой до рН 2-5, а термообработку осадка ведут при температуре 60-100°C с получением титансодержащего сорбента или при температуре 680-820°C с получением титансодержащего пигмента.

Достижению технического результата способствует то, что используют сернокислый раствор титана с концентрацией 50-100 г/л TiO2 и кислотным фактором 1,25-2,5.

Достижению технического результата способствует также то, что в сернокислый раствор титана вводят 5-20% раствор аммиака.

Сущность заявленного изобретения заключается в следующем. При взаимодействии сернокислого раствора титана с раствором аммиака происходит реакция нейтрализации с образованием дисперсии:

TiOSO4+2NH3+2H2O=↓TiO(OH)2+(NH4)2SO4.

В получаемой дисперсии титан находится в твердой фазе в виде гидроксида, а сульфат аммония - в жидкой фазе. Механизм формирования твердой фазы включает две основные стадии. Первая стадия - образование коллоидного раствора, в котором частицы гидроксида титана присутствуют в виде золя и геля с преобладающим содержанием геля. Вторая стадия - коагуляция коллоидных частиц с образованием частиц гидроксида титана. При управляемом синтезе согласно изобретению эти стадии протекают последовательно, что позволяет стабилизировать коллоидный раствор и способствует при введении его в осаждающий реагент формированию титансодержащего осадка в виде микрогранул с получением наноразмерных титансодержащих продуктов с заданными функциональными свойствами. При проведении нейтрализации в нерегулируемом режиме указанные стадии протекают параллельно, что приводит к образованию крупнодисперсного осадка гидроксида титана с широким фракционным составом.

Существенные признаки заявленного изобретения, определяющие объем правовой охраны и достаточные для получения вышеуказанного технического результата, выполняют функции и соотносятся с результатом следующим образом.

Введение раствора аммиака в сернокислый раствор титана до обеспечения кислотного фактора 0,2-0,5 способствует образованию дисперсии гидроксида титана в виде раствора с необходимым отношением золя и геля. При кислотном факторе сернокислого раствора титана менее 0,2 гель коагулирует с образованием крупнодисперсного осадка, который снижает активность дисперсии, что ведет к ухудшению свойств титансодержащих продуктов. При кислотном факторе более 0,5 активность дисперсии также снижается за счет пониженной концентрации в ней коллоидного титана.

Нагревание дисперсии гидроксида титана до 50-70°С и ее выдержка в течение 1,0-1,5 ч сопровождается пептизацией (разукрупнением) геля с образованием стабильной активированной дисперсии, что необходимо для получения узкого фракционного состава коллоидных частиц и повышения их агрегативной устойчивости.

Нагревание дисперсии до температуры ниже 50°С не обеспечивает полноты пептизации геля, что снижает стабильность активной дисперсии и расширяет фракционный состав коллоидных частиц и, соответственно, частиц титансодержащих продуктов. Это ведет к снижению свойств титансодержащих продуктов. Нагревание дисперсии до температуры выше 70°С вызывает потерю стабильности дисперсии, что приводит к коагуляции частиц с образованием крупнодисперсного осадка и к снижению свойств титансодержащих продуктов.

Выдержка дисперсии в течение менее 1 ч приводит к расширению фракционного состава частиц дисперсии, снижению стабильности и к образованию крупнодисперсного осадка, что ухудшает свойства титансодержащих продуктов, а выдержка в течение более 1,5 ч практически не влияет на свойства продуктов.

Введение дисперсии гидроксида титана в раствор осаждающего реагента в виде 20-25% раствора аммиака или 50-70% раствора фосфорной кислоты с формированием титансодержащего осадка в виде микрогранул обеспечивает получение в рамках единой технологии агрегированных частиц осадка с высокой удельной поверхностью.

Промывка титансодержащего осадка водой до рН 2-5 обеспечивает удаление из него маточного раствора, что повышает пигментные и сорбционные свойства титансодержащих продуктов.

Термообработка при температуре 60-100°С способствует формированию титансодержащего сорбента с развитой аморфной структурой, обеспечивающей высокие сорбционные свойства.

Термообработка при температуре 680-820°С способствует формированию титансодержащего пигмента с уплотненной структурой, обеспечивающей высокие пигментные свойства.

Совокупность вышеуказанных признаков необходима и достаточна для достижения технического результата изобретения, заключающегося в получении в рамках единой технологии наноразмерных титансодержащих продуктов в виде пигментов и сорбентов с высокими пигментными и сорбционными свойствами.

В частных случаях осуществления изобретения предпочтительны следующие режимные параметры.

Использование сернокислого раствора титана с концентрацией 50-100 г/л TiO2 и кислотным фактором 1,25-2,5 обеспечивает вязкость получаемой дисперсии, необходимую для проведения регулируемого синтеза.

Введение в сернокислый раствор титана 5-20% раствора аммиака обеспечивает возможность управления получением дисперсии с требуемым количеством геля.

Вышеуказанные частные признаки изобретения позволяют осуществить способ в оптимальном режиме с точки зрения получения в рамках единой технологии наноразмерных титансодержащих продуктов в виде пигментов и сорбентов с высокими пигментными и сорбционными свойствами.

Сущность и преимущества заявленного способа могут быть более наглядно проиллюстрированы следующими примерами.

Пример 1. В 10 л сернокислого раствора титана с концентрацией 50 г/л TiO2 и кислотным фактором 2,5 вводят 20% раствор аммиака до обеспечения кислотного фактора 0,2 с образованием дисперсии гидроксида титана. Полученную дисперсию нагревают до 70°С, выдерживают в течение 1 ч и вводят в раствор осаждающего реагента - 25% раствор аммиака с формированием наноразмерного (удельная поверхность 115 м2/г) титансодержащего осадка в виде микрогранул. Образовавшийся титансодержащий осадок в количестве 1000 г (содержание TiO2 - 50%) отделяют фильтрованием, промывают водой до рН 5 и подвергают термообработке. Одну часть осадка в количестве 500 г подвергают термообработке при температуре 60°C с получением 320 г (содержание TiO2 - 78,1%) титансодержащего сорбента в виде гидратированного диоксида титана с сорбционной емкостью - 50 мг/г по Sr2+. Другую часть осадка в количестве 500 г подвергают термообработке при температуре 680°C с получением 250 г титансодержащего пигмента в виде диоксида титана, обладающего следующими свойствами: белизна - 98,2%, разбеливающая способность - 1000 усл.ед., укрывистость - 42,1 г/м2. Извлечение TiO2 в готовые продукты составляет 100%.

Пример 2. В 10 л сернокислого раствора титана с концентрацией 100 г/л TiO2 и кислотным фактором 1,25 вводят 5% раствор аммиака до обеспечения кислотного фактора 0,5 с образованием дисперсии гидроксида титана. Полученную дисперсию нагревают до 50°С, выдерживают в течение 1,5 ч и вводят в раствор осаждающего реагента - 20% раствор аммиака с формированием наноразмерного (удельная поверхность 105 м2/г) титансодержащего осадка в виде микрогранул. Образовавшийся титансодержащий осадок в количестве 2000 г (содержание TiO2 - 50%) отделяют фильтрованием, промывают водой до рН 4 и подвергают термообработке. Одну часть осадка в количестве 1000 г подвергают термообработке при температуре 100°С с получением 700 г (содержание TiO2 - 71,4%) титансодержащего сорбента в виде гидратированного диоксида титана с сорбционной емкостью - 48 мг/г по Sr2+. Другую часть осадка в количестве 1000 г подвергают термообработке при температуре 820°C с получением 500 г титансодержащего пигмента в виде диоксида титана, обладающего следующими свойствами: белизна - 97,5%, разбеливающая способность - 1080 усл.ед., укрывистость - 40,6 г/м2. Извлечение TiO2 в готовые продукты составляет 100%.

Пример 3. В 10 л сернокислого раствора титана с концентрацией 75 г/л TiO2 и кислотным фактором 1,8 вводят 15% раствор аммиака до обеспечения кислотного фактора 0,4 с образованием дисперсии гидроксида титана. Полученную дисперсию нагревают до 65°С, выдерживают в течение 1,25 ч и вводят в раствор осаждающего реагента - 23% раствор аммиака с формировани-ем наноразмерного (удельная поверхность 125 м2/г) титансодержащего осадка в виде микрогранул. Образовавшийся титансодержащий осадок в количестве 1500 г (содержание TiO2 - 50%) отделяют фильтрованием, промывают водой до рН 5 и подвергают термообработке. Одну часть осадка в количестве 750 г подвергают термообработке при температуре 80°C с получением 500 г (содержание TiO2 - 75%) титансодержащего сорбента в виде гидратированного диоксида титана с сорбционной емкостью - 72 мг/г по Sr2+. Другую часть осадка в количестве 750 г подвергают термообработке при температуре 800°C с получением 325 г титансодержащего пигмента в виде диоксида титана, обладающего следующими свойствами: белизна - 98,1%, разбеливающая способность - 1200 усл.ед., укрывистость - 39,5 г/м2. Извлечение TiO2 в готовые продукты составляет 100%.

Пример 4. В 10 л сернокислого раствора титана с концентрацией 75 г/л TiO2 и кислотным фактором 1,8 вводят 15% раствор аммиака до обеспечения кислотного фактора 0,4 с образованием дисперсии гидроксида титана. Полученную дисперсию нагревают до 65°С, выдерживают в течение 1,25 ч и вводят в раствор осаждающего реагента - 70% раствор фосфорной кислоты с формированием наноразмерного (удельная поверхность 205 м2/г) титансодержащего осадка в виде микрогранул. Образовавшийся титансодержащий осадок в количестве 2500 г (содержание TiO2 - 30%) отделяют фильтрованием, промывают водой до рН 2,5 и подвергают термообработке. Одну часть осадка в количестве 1250 г подвергают термообработке при температуре 60°C с получением 975 г (содержание TiO2 - 38,5%) титансодержащего сорбента в виде гидратированного фосфата титана с сорбционной емкостью - 120 мг/г по Sr2+. Другую часть осадка в количестве 1250 г подвергают термообработке при температуре 700°C с получением 1050 г титансодержащего пигмента в виде безводного фосфата титана, обладающего следующими свойствами: белизна - 98,5%), разбеливающая способность - 800 усл.ед., укрывистость - 55,9 г/м2. Извлечение TiO2 в готовые продукты составляет 100%.

Пример 5. В 10 л сернокислого раствора титана с концентрацией 75 г/л TiO2 и кислотным фактором 1,8 вводят 15% раствор аммиака до обеспечения кислотного фактора 0,4 с образованием дисперсии гидроксида титана. Полученную дисперсию нагревают до 65°С, выдерживают в течение 1,25 ч и вводят в раствор осаждающего реагента - 50% раствор фосфорной кислоты с формированием наноразмерного (удельная поверхность 195 м2/г) титансодержащего осадка в виде микрогранул. Образовавшийся титансодержащий осадок в количестве 2680 г (содержание TiO2 - 28%) отделяют фильтрованием, промывают водой до рН 2 и подвергают термообработке. Одну часть осадка в количестве 1340 г подвергают термообработке при температуре 100°С с получением 1070 г (содержание TiO2 - 40,5%) титансодержащего сорбента в виде гидратированного фосфата титана с сорбционной емкостью - 100 мг/г по Sr2+. Другую часть осадка в количестве 1340 г подвергают термообработке при температуре 700°С с получением 1050 г титансодержащего пигмента в виде безводного фосфата титана, обладающего следующими свойствами: белизна - 98,4%), разбеливающая способность - 820 усл.ед., укрывистость - 60,1 г/м. Извлечение TiO2 в готовые продукты составляет 100%.

Пример 6. В 10 л сернокислого раствора титана с концентрацией 75 г/л TiO2 и кислотным фактором 1,8 вводят 15% раствор аммиака до обеспечения кислотного фактора 0,4 с образованием дисперсии гидроксида титана. Полученную дисперсию нагревают до 65°С, выдерживают в течение 1,25 ч и вводят в раствор осаждающего реагента - 60% раствор фосфорной кислоты с формированием наноразмерного (удельная поверхность 220 м2/г) титансодержащего осадка в виде микрогранул. Образовавшийся титансодержащий осадок в количестве 2500 г (содержание TiO2 - 30%) отделяют фильтрованием, промывают водой до рН 2,1 и подвергают термообработке. Одну часть осадка в количестве 1250 г подвергают термообработке при температуре 80°C с получением 915 г (содержание TiO2 - 41%) титансодержащего сорбента в виде гидратированного фосфата титана с сорбционной емкостью - 155 мг/г по Sr2+. Другую часть осадка в количестве 1250 г подвергают термообработке при температуре 700°C с получением 1050 г титансодержащего пигмента в виде безводного фосфата титана, обладающего следующими свойствами: белизна - 98,5%, разбеливающая способность - 800 усл.ед., укрывистость - 55,0 г/м2. Извлечение TiO2 в готовые продукты составляет 100%.

Пример 7. В 10 л сернокислого раствора титана с концентрацией 75 г/л TiO2 и кислотным фактором 1,8 вводят 15% раствор аммиака до обеспечения кислотного фактора 0,4 с образованием дисперсии гидроксида титана. Полученную дисперсию нагревают до 65°С, выдерживают в течение 1,25 ч и вводят в раствор осаждающего реагента - 23% раствор аммиака с формированием наноразмерного (удельная поверхность 125 м2/г) титансодержащего осадка в виде микрогранул. Образовавшийся титансодержащий осадок в количестве 1500 г (содержание TiO2 - 50%) отделяют фильтрованием, промывают водой до рН 5 и подвергают термообработке при температуре 80°C с получением 1000 г (содержание TiO2 - 75%) титансодержащего сорбента в виде гидратированного диоксида титана с сорбционной емкостью - 72 мг/г по Sr2+. Извлечение TiO2 в готовый продукт составляет 100%.

Пример 8. В 10 л сернокислого раствора титана с концентрацией 75 г/л TiO2 и кислотным фактором 1,8 вводят 15% раствор аммиака до обеспечения кислотного фактора 0,4 с образованием дисперсии гидроксида титана. Полученную дисперсию нагревают до 65°С, выдерживают в течение 1,25 ч и вводят в раствор осаждающего реагента - 23% раствор аммиака с формированием наноразмерного (удельная поверхность 125 м2/г) титансодержащего осадка в виде микрогранул. Образовавшийся титансодержащий осадок в количестве 1500 г (содержание TiO2 - 50%) отделяют фильтрованием, промывают водой до рН 5 и подвергают термообработке при температуре 800°C с получением 750 г (содержание TiO2 - 75%) титансодержащего пигмента в виде диоксида титана, обладающего следующими свойствами: белизна - 98,1%), разбеливающая способность - 1200 усл.ед., укрывистость - 39,5 г/м2. Извлечение TiO2 в готовый продукт составляет 100%.

Пример 9. В 10 л сернокислого раствора титана с концентрацией 75 г/л TiO2 и кислотным фактором 1,8 вводят 15% раствор аммиака до обеспечения кислотного фактора 0,4 с образованием дисперсии гидроксида титана. Полученную дисперсию нагревают до 65°С, выдерживают в течение 1,25 ч и вводят в раствор осаждающего реагента - 60%) раствор фосфорной кислоты с формированием наноразмерного (удельная поверхность 220 м2/г) титансодержащего осадка в виде микрогранул. Образовавшийся титансодержащий осадок в количестве 2500 г (содержание TiO2 - 30%) отделяют фильтрованием, промывают водой до рН 2,1 и подвергают термообработке при температуре 80°C с получением 1830 г (содержание TiO2 - 41%) титансодержащего сорбента в виде гидратированного фосфата титана с сорбционной емкостью - 155 мг/г по Sr2+. Извлечение TiO2 в готовый продукт составляет 100%.

Пример 10. В 10 л сернокислого раствора титана с концентрацией 75 г/л TiO2 и кислотным фактором 1,8 вводят 15% раствор аммиака до обеспечения кислотного фактора 0,4 с образованием дисперсии гидроксида титана. Полученную дисперсию нагревают до 65°C, выдерживают в течение 1,25 ч и вводят в раствор осаждающего реагента - 60% раствор фосфорной кислоты с формированием наноразмерного (удельная поверхность 220 м2/г) титансодержащего осадка в виде микрогранул. Образовавшийся титансодержащий осадок в количестве 2500 г (содержание TiO2 - 30%) отделяют фильтрованием, промывают водой до рН 2,1 и подвергают термообработке при температуре 700°C с получением 2000 г титансодержащего пигмента в виде безводного фосфата титана, обладающего следующими свойствами: белизна - 98,5%, разбеливающая способность - 800 усл.ед., укрывистость - 55,0 г/м2. Извлечение TiO2 в готовый продукт составляет 100%.

Пример 11 (по прототипу). В 10 л сернокислого раствора сульфата титанила и аммония вводят 19% раствор аммиака с образованием дисперсии гидроксида титана, содержащей 140 г/л TiO2. Полученную дисперсию выдерживают в течение 1 ч и отделяют фильтрованием крупнодисперсный титансодержащий осадок (удельная поверхность 20 м2/г). Часть осадка подвергают термообработке при температуре 80°C с получением гидратированного диоксида титана с сорбционной емкостью 21 мг/г по Sr2+. Другую часть осадка подвергают термообработке при 860°C с получением пигментного диоксида титана со следующими пигментными свойствами: белизна - 96%, разбеливающая способность - 1020 усл.ед., укрывистость - 45 г/м2. Извлечение TiO2 в готовые продукты составляет 100%.

Из анализа вышеприведенных Примеров видно, что предлагаемый способ позволяет по сравнению с прототипом получить в рамках единой технологии наноразмерные титансодержащие продукты в виде пигментов со следующими характеристиками: белизна - 97,5-98,5%, разбеливающая способность - 800-1200 усл.ед., укрывистость - 39,5-60,1 г/м2 и сорбентов с сорбционной емкостью 48-155 мг/г по Sr2+. Способ согласно изобретению относительно прост и может быть реализован на стандартном оборудовании при получении пигментов для производства лакокрасочных материалов, бумаги и пластмасс и сорбентов для очистки стоков от радионуклидов и токсичных веществ.

1. Способ получения титансодержащего продукта, включающий введение в сернокислый раствор титана раствора аммиака с образованием дисперсии гидроксида титана, отделение титансодержащего осадка и его термообработку, отличающийся тем, что введение раствора аммиака в сернокислый раствор титана осуществляют до обеспечения кислотного фактора 0,2-0,5, полученную дисперсию гидроксида титана нагревают до 50-70°C, выдерживают в течение 1,0-1,5 ч и вводят в раствор осаждающего реагента, в качестве которого берут 20-25%-ный раствор аммиака или 50-70%-ный раствор фосфорной кислоты, с формированием титансодержащего осадка в виде микрогранул, который после отделения промывают водой до рН 2-5, а термообработку осадка ведут при температуре 60-100°C с получением титансодержащего сорбента или при температуре 680-820°C с получением титансодержащего пигмента.

2. Способ по п.1, отличающийся тем, что используют сернокислый раствор титана с концентрацией 50-100 г/л TiO2 и кислотным фактором 1,25-2,5.

3. Способ по п.1, отличающийся тем, что в сернокислый раствор титана вводят 5-20%-ный раствор аммиака.



 

Похожие патенты:
Изобретение относится к лакокрасочной промышленности, в частности к производству художественных красок, лаков, глазурей, окрашиванию полимеров и др. .
Изобретение относится к УФ-поглощающей полимерной композиции, широко применяемой для получения УФ-поглощающих полимерных пленок для сельского хозяйства и упаковок, пищевых контейнеров, волокон, тканей.

Изобретение относится к пигменту на основе диоксида титана с хорошей непрозрачностью и к способу его получения и применения при изготовлении декоративной бумаги и декоративной фольги.
Изобретение относится к гибридному органически-неорганическому мономерному материалу, а именно к способу его получения. .

Изобретение относится к новым пигментам для светоотражающих покрытий и может найти применение в летательных аппаратах космической техники, в широких отраслях промышленности, а также для теплосбережения зданий.

Изобретение относится к светоотражающим покрытиям и может быть использовано в космической технике, в отраслях промышленности, а также для теплосбережения жилых и производственных зданий.

Изобретение относится к углеродсодержащему фотокатализатору на основе диоксида титана, который является фотоактивным в видимой области спектра, в дальнейшем называемому vlp-TiO2 .
Изобретение относится к получению диоксида титана, используемого в производстве фотоактивных катализаторов, кремнийорганических и тиоколовых герметиков. .
Изобретение относится к технологии получения тонкопленочных материалов на основе системы двойных оксидов, применяемых в быстро развивающихся областях электронной техники и светотехнической промышленности, строительной индустрии, в том числе в технологиях интегральных схем; в качестве коррозионно-стойких, декоративных, фильтрующих и перераспределяющих излучение покрытий.

Изобретение относится к углеродсодержащему фотокатализатору на основе диоксида титана, который является фотоактивным в видимой области спектра, в дальнейшем называемому vlp-TiO2 .
Изобретение относится к области химической технологии и может быть использовано в производстве катализаторов, сорбентов, осушителей. .

Изобретение относится к получению титановых концентратов с низким содержанием радионуклидных элементов и может быть использовано в производстве пигментов на основе диоксида титана.
Изобретение относится к светоустойчивым полимерным композициям. .
Изобретение относится к области химической промышленности, а именно к способам получения модифицированного диоксида титана. .
Наверх