Меточный датчик аэродинамического угла и воздушной скорости

Изобретение относится к устройствам для измерения величины (модуля) и угла направления (аэродинамического угла) вектора воздушной скорости летательного аппарата. Устройство содержит генератор ионных меток, систему приемных электродов, канал регистрации ионных меток и измерительную схему формирования выходных сигналов. Система приемных электродов выполнена в виде круглых металлических пластин, которые расположены на одинаковом расстоянии по окружности с центром в точке генерации ионной метки и установлены непосредственно под отверстием металлической пластины-маски, закрепленной на диэлектрической плате, при этом приемные электроды соединены со входами предварительных усилителей канала регистрации ионных меток и выполнены совместно с ними в виде автономных модулей, имеющих экранирующий корпус, выходы предварительных усилителей через аналоговые ключи (коммутаторы) и сумматоры подключены ко входам дифференциальных усилителей канала регистрации ионных меток. Технический результат заключается в расширении диапазона измерения измеряемого аэродинамического угла до ±180°, обеспечении высокой разрешающей способности по аэродинамическому углу без увеличения числа приемных электродов и габаритов системы приемных электродов, возможности одновременного измерении величины (модуля) и угла направления вектора воздушной скорости летательного аппарата без внесения в набегающий воздушный поток выступающих аэрометрических приемников. 5 з.п. ф-лы, 6 ил.

 

Изобретение относится к области измерений параметров подвижного объекта, в частности к устройствам для измерения величины (модуля) и угла направления вектора скорости подвижного объекта относительно окружающей воздушной среды и может быть использовано в датчике аэродинамических углов (угла атаки или скольжения) и воздушной скорости летательного аппарата, в частности самолета.

Известны устройства для измерения величины и угла направления вектора скорости газового (воздушного) потока, реализующие аэродинамический метод (способ) измерения (Петунин А.Н. Методы и техника измерений параметров газового потока (Приемники давления и скоростного напора). М.: Машиностроение, 1972. 332 с. - [1]; Горлин С.М., Слезингер И.И. Аэромеханические измерения. Методы и приборы. М.: Наука, 1964. 636 с. - [2]).

В таких устройствах в контролируемый набегающий воздушный поток вносится приемник давлений, например, в виде сферического тела с цилиндрическим основанием, который воспринимает полное и статическое давления набегающего воздушного потока, по которым определяется величина (модуль) вектора скорости набегающего воздушного потока. Этот же приемник воспринимает давления, несущие информацию об угловом положении вектора скорости набегающего воздушного потока относительно осей приемника давлений, по которым определяются углы направления вектора скорости набегающего воздушного потока.

Применение таких устройств для измерения величины (модуля) и аэродинамического угла (угла атаки или скольжения) вектора воздушной скорости летательного аппарата, в частности самолета, связано с необходимостью вынесения приемников давлений за пределы пограничного слоя летательного аппарата, что неизбежно приводит к нарушению аэродинамики летательного аппарата, усложнению конструкции датчика аэродинамического угла и воздушной скорости. При этом изменение состояния окружающей воздушной среды (плотности, температуры, атмосферного давления, влажности, загрязнения и т.п.) приводит к появлению дополнительных погрешностей измерения, снижают надежность работы датчика.

Известны устройства для измерения величины и угла направления вектора воздушной скорости подвижного объекта, реализующие кинематический метод измерения, при котором в набегающий воздушный поток вносится метка и с помощью регистраторов контролируется скорость и направление (траекторию) движения метки совместно с потоком (Патент США №2872609, кл 73-180. 1959 - [3]; Заявка Японии №49 - 622, G01C 17/26, 1972. - [4].

За прототип взято устройство для измерения параметров подвижного объекта (Авторское свидетельство №735065, СССР, G01C 21/12, 1980 - [5]).

Такое устройство-прототип предназначено для измерения угла положения (направления) вектора воздушной скорости подвижного объекта и содержит источник излучения (метки), преимущественно в виде генератора ионов, систему приемников ионной метки, выполненную в виде кодовой маски, размещенной на обшивке подвижного объекта, схему регистрации траектории движения ионной метки и формирования выходного сигнала по измеряемому углу направления вектора воздушной скорости (углу атаки или скольжения) подвижного объекта.

На фиг.1 показана структурно-функциональная схема устройства-прототипа, которая содержит источник (генератор) ионных меток I, систему приемных электродов II, схему регистрации ионных меток и формирования выходных сигналов III, выход которой является выходным сигналом αэ по углу направления α вектора воздушной скорости подвижного объекта, который подается на индикатор к другим потребителям П.

Источник (генератор) ионных меток 1 состоит из источника И импульсного высоковольтного напряжения и разрядника Р.

Система приемных электродов II образует кодовую маску КМ, реализующую заданный, например, двоичный код.

Схема регистрации ионной метки и формирования выходных сигналов III включает подключенные к системе приемных электродов регистраторы Рг ионной метки и измерительную схему формирования выходных сигналов ИС.

При работе устройства-прототипа источник И импульсного высоковольтного напряжения выдает импульс, который подается на разрядник Р. За счет искрового разряда разрядника образуется ионизированная область - ионная метка с явно выраженным электростатическим зарядом определенной полярности. Заряженная ионная метка перемещается совместно с набегающим воздушным потоком и приобретает его параметры движения - скорость и направление относительно системы приемных электродов II. При перемещении ионной метки совместно с воздушным потоком по направлению его движения траектория ионной метки пересекает приемные электроды кодовой маски КМ, которые лежат на пути ее движения, наводя (индуцируя) на них электростатические заряды, комбинация которых образует определенный код, соответствующий углу направления траектории метки, т.е. углу α направления вектора воздушной скорости подвижного объекта. Наведенные электростатические заряды фиксируются регистраторами Рп, связанными с приемными электродами. Выходные сигналы регистраторов поступают в измерительную схему формирования выходных сигналов ИС, которая после расшифровки (дешифрации) комбинации сигналов регистраторов ионных меток выдает выходной сигнал αэ, пропорциональный углу α направления вектора воздушной скорости подвижного объекта, который поступает на индикатор к другим потребителям II.

Однако устройство-прототип имеет ряд недостатков. Для обеспечения требуемой разрешающей способности по измеряемому углу направления вектора воздушной скорости подвижного объекта порядка 0,05° в широком диапазоне измерения необходимо иметь большое число разрядов кодовой маски и, как следствие, большое число приемных электродов и регистраторов ионной метки и значительные размеры кодовой маски. Диапазон измерения угла направления вектора воздушной скорости подвижного объекта (угла атаки или скольжения) обычно ограничен значением ±60…80°. Устройство-прототип не позволяет непосредственно измерить величину (модуль) вектора воздушной скорости.

Указанные недостатки ограничивают применение устройства-прототипа на высокоманевренных подвижных объектах, в частности на самолетах.

Заявляемое изобретение направлено на достижение технического результата, который заключается в расширении диапазона измерения угла направления вектора воздушной скорости (аэродинамического угла - угла атаки или скольжения) до ±180°, в обеспечении высокой разрешающей способности по аэродинамическому углу без увеличения числа приемных электродов и размеров (габаритов) системы приемных электродов, в одновременном измерении величины (модуля) и угла направления вектора воздушной скорости подвижного объекта без внесения в набегающий воздушный поток выступающих аэрометрических приемников.

Технический результат достигается следующим.

В меточном датчике аэродинамического угла и воздушной скорости, содержащем генератор ионных меток, систему приемных электродов, канал регистрации ионных меток и измерительную схему формирования выходных сигналов, новым является то, что система приемных электродов выполнена в виде круглых металлических пластин, которые расположены на одинаковом расстоянии по окружности с центром в точке генерации ионной метки и установлены непосредственно под отверстием металлической пластины-маски, закрепленной на диэлектрической плате, при этом приемные электроды соединены со входами предварительных усилителей канала регистрации ионных меток и выполнены совместно с ними в виде автономных модулей, имеющих экранирующий корпус, выходы предварительных усилителей через аналоговые ключи (коммутаторы) и сумматоры подключены ко входам дифференциальных усилителей канала регистрации ионных меток.

В меточном датчике аэродинамического угла воздушной скорости измерительная схема формирования выходных сигналов выполнена в виде канала определения рабочего сектора измеряемого угла, являющегося каналом грубого отсчета, и канала точного измерения угла, подключенных ко входу вычислительного устройства, выходы которого являются цифровыми кодами по углу атаки и воздушной скорости.

В меточном датчике аэродинамического угла и воздушной скорости канал определения рабочего сектора измеряемого угла канала грубого отсчета выполнен в виде четырех идентичных каналов, соответствующих одному из четырех рабочих секторов диапазона измерения угла атаки, каждый из которых включает в себя два сумматора, на вход первого из которых подключены выходы нечетных модулей предварительных усилителей данного рабочего сектора, а на вход второго сумматора подключены выходы четных модулей предварительных усилителей данного рабочего сектора измеряемого угла, при этом выходы сумматоров каждого из четырех идентичных каналов подключены ко выходам дифференциальных усилителей, выходы которых через коммутаторы подключены ко входу вычислительного устройства.

В меточном датчике аэродинамического угла и воздушной скорости канал точного измерения угла выполнен в виде двух идентичных параллельных каналов преобразования, первый из которых подключен к выходам четных модулей предварительных усилителей этого канала, формирующих информативный сигнал, величина которого имеет синусоидальную зависимость от измеряемого угла, а второй канал преобразования подключен к выходам нечетных модулей предварительных усилителей, формирующих информативный сигнал, величина которого имеет косинусоидальную зависимость от измеряемого угла, при этом канал преобразования, формирующий синусоидальную зависимость от измеряемого угла включает два сумматора, входы первого из них подключены к выходам четных модулей предварительных усилителей, формирующих синусоидальную зависимость от измеряемого угла со знаком плюс, а входы второго сумматора подключены к выходам четных модулей предварительных усилителей, формирующих синусоидальную зависимость от измеряемого угла со знаком минус, а канал преобразования, формирующий косинусоидальную зависимость от измеряемого угла, включает два сумматора, входы первого из них подключены к выходам нечетных модулей предварительных усилителей, формирующих косинусоидальную зависимость от измеряемого угла со знаком плюс, а входы второго сумматора подключены к выходам нечетных модулей предварительных усилителей, формирующих косинусоидальную зависимость от измеряемого угла со знаком минус, причем выходы сумматоров каждого из идентичных параллельных каналов преобразования подключены ко входам дифференциальных усилителей, выходы которых подключены ко входам программируемых усилителей, управляющие входы которых подключены к вычислительному устройству, а выходы программируемых усилителей через интеграторы и аналогоцифровые преобразователи подключены ко входу вычислительного устройства, который также управляет запуском аналогоцифровых преобразователей, причем выходы программируемых усилителей через компараторы соединены с вычислительным устройством.

В меточном датчике аэродинамического угла и воздушной скорости сигнал, поступающий от вычислительного устройства на управляющий вход программируемых усилителей канала точного измерения угла, формируется вычислительным устройством по сигналам, поступающим с выходов аналогоцифровых преобразователей двух идентичных параллельных каналов преобразования, в соответствии с алгоритмом

(Asinα)2+(Acosα)2=A2(sin2α+cos2α)=A2,

где А - величина (амплитуда) выходных сигналов предварительных усилителей, формирующих синусоидальную и косинусоидальную зависимости от измеряемого угла α.

В меточном датчике аэродинамического угла и воздушной скорости канал измерения воздушной скорости выполнен в виде двух компараторов, входы которых подключены к выходам программируемых усилителей канала точного измерения аэродинамического угла, а выходы, являющиеся выходом по времени пролета ионной метки расстояния от точки генерации ионной метки до окружности с приемными электродами, подключены к вычислительному устройству.

Сущность изобретения поясняется на фиг.2 - фиг.6. На фиг.2 приведена функциональная схема меточного датчика аэродинамического угла и воздушной скорости. На фиг.3 показана конструктивная схема системы приемных электродов. На фиг.4 показан принцип формирования синусоидального и косинусоидального информативных сигналов с помощью дискретных приемных электродов. На фиг.5 приведена структурно-функциональная схема канала определения рабочего сектора измеряемого аэродинамического угла (канала грубого отсчета). На фиг.6 приведена структурно-функциональная схема канала точного имерения аэродинамического угла и канала воздушной скорости.

Функциональная схема меточного датчика аэродинамического угла и воздушной скорости (фиг.2) содержит систему приемных электродов 1 в виде круглых металлических пластин, расположенных на одинаковом расстоянии по окружности радиусом R с центром в точке расположения разрядника 2, где происходит генерация ионной метки. Приемные электроды соединены со входами предварительных усилителей канала регистрации ионных меток, расположенных в блоке предварительных усилителей БПУ 3. Приемные электроды выполнены совместно с предварительными усилителями в виде автономных модулей, имеющих экранирующий корпус, расположенных в БПУ. Выходы блока предварительных усилителей 3 подключены ко входу канала точного измерения угла (канал точного измерения аэродинамического угла) 4, ко входу канала измерения воздушной скорости 5 и ко входу определения рабочего сектора измеряемого аэродинамического угла (канал грубого отсчета) 6. Выходы всех указанных каналов подключены ко входу вычислительного устройства ВУ 7, выходы которого являются цифровыми кодами по аэродинамическому углу Nα и по воздушной скорости Nv.

На выходе вычислительного устройства ВУ 7 также формируется выходной сигнал Fгм, который является управляющим входом генератора меток ГМ 8 и задает частоту генерации ионных меток и начало цикла измерения аэродинамического угла и воздушной скорости.

Конструктивно систему приемных электродов с точки зрения технологической воспроизводимости целесообразно выполнить на основе металлической маски (фиг.3). Маска представляет собой тонкую металлическую пластину 9, на которой имеются отверстия 10, расположенные на одинаковом расстоянии αо по окружности радиусом R. Под маской 9 находится диэлектрическая плата 11 с приемными электродами 12. Электроды 12 располагаются непосредственно под отверстиями 10 металлической маски 9.

Данная конструкция системы приемных электродов является достаточно простой для реализации и позволяет обеспечить высокую точность формирования синусоидальных и косинусоидальных угловых характеристик информативных сигналов приемных электродов (фиг.4). Форма угловой характеристики многоэлементной электродной системы определяется формой характеристики отдельного дискретного приемного электрода, взаимным расположением электродов и схемой подключения их к предварительным усилителям канала регистрации ионных меток (фиг.4).

Задачей синтеза угловой характеристики приемных электродов является нахождение конструктивных параметров маски, обеспечивающих формирование синусоидальных и косинусоидальных угловых характеристик.

Предлагаемый меточный датчик аэродинамического угла и воздушной скорости включает два канала 4, 6 измерения аэродинамического угла - канал определения рабочего сектора измеряемого угла 6, являющийся каналом грубого отсчета, и канал точного измерения угла 4.

Канал определения рабочего сектора измеряемого угла (канал грубого отсчета) 6 (фиг.5) выполнен в виде четырех идентичных каналов, соответствующих одному из четырех рабочих секторов диапазона изменения измеряемого аэродинамического угла, каждый i-ый идентичный канал включает в себя два сумматора СУМ 13, входы которых подключены к выходам предварительных усилителей ПУ блока БПУ 3 своего сектора (например, к выходам предварительных усилителей ПУ с номерами, указанными на фиг.5), выходы сумматоров СУМ 13 подключены ко входу дифференциального усилителя ДУi 14, выход которого соединен со входом компаратора Ki 15, выход которого является выходом i-го рабочего сектора и свидетельствует о попадании (или отсутствии) траектории движения ионной метки в i-ый рабочий сектор и подключен к вычислительному устройству ВУ 7.

Канал точного измерения аэродинамического угла (фиг.6) выполнен в виде двух идентичных параллельных каналов преобразования, первый из которых подключен к выходам четных модулей предварительных усилителей ПУ блока БПУ 3 (например, к выходам предварительных усилителей ПУ с номерами, указанными на фиг.6), формирующих информативный сигнал, величина которого имеет синусоидальную зависимость от измеряемого угла, а второй параллельный канал преобразования подключен к выходам нечетных модулей предварительных усилителей ПУ (например, к выходам предварительных усилителей ПУ с номерами, указанными на фиг.6), формирующих информативный сигнал, величина которого имеет косинусоидальную зависимость от измеряемого угла.

Канал преобразования, формирующий синусоидальную зависимость от измеряемого угла включает два сумматора СУМ 16 и 17. Входы первого из них СУМ +sin 16 подключены к выходам четных модулей предварительных усилителей ПУ, формирующих синусоидальную зависимость от измеряемого угла со знаком плюс (+sin) (например, к выходам предварительных усилителей ПУ с номерами, указанными на фиг.6). Входы второго сумматора СУМ - sin 17 подключены к выходам четных модулей предварительных усилителей ПУ, формирующих синусоидальную зависимость от измеряемого угла со знаком минус (-sin) (например, к выходам предварительных усилителей ПУ с номерами, показанными на фиг.6).

Второй параллельный канал преобразования, формирующий косинусоидальную зависимость от измеряемого угла, включает два сумматора СУМ 18 и 19. Входы первого из них СУМ +cos 18 подключены к выходам нечетных модулей предварительных усилителей ПУ, формирующих косинусоидальную зависимость от измеряемого угла со знаком плюс (+cos) (например, к выходам предварительных усилителей ПУ с номерами, показанными на фиг.6). Входы второго сумматора СУМ -cos 19 подключены к выходам нечетных модулей предварительных усилителей ПУ, формирующих косинусоидальную зависимость от измеряемого угла со знаком минус (-cos) (например, к выходам предварительных усилителей ПУ с номерами, показанными на фиг.6).

Выходы сумматоров СУМ 16, 17 и 18, 19 каждого из параллельных каналов преобразования подключены ко входам дифференциальных усилителей ДУ 20 и ДУ 21, выходы которых подключены ко входам программируемых усилителей УП 22 и УП 23, управляющие входы которых подключены к выходу АРУ (автоматическое регулирование усиления) вычислительного устройства ВУ 7. Выходы программируемых усилителей через интеграторы ИHTsin 24 и ИHTcos 25 и аналогоцифровые преобразователи АЦПsin 26 и AЦПcos 27 подключены ко входу вычислительного устройства ВУ 7, который также управляет запуском аналогоцифровых преобразователей АЦПsin 26 и AЦПcos 27.

Сигнал АРУ (автоматическое регулирование усиления), поступающий от вычислительного устройства ВУ 7 на управляющие входы программируемых усилителей УП 22 и УП 23 канала точного измерения аэродинамического угла формируется вычислительным устройством ВУ 7 по сигналам, поступающим с выходов аналогоцифровых преобразователей АЦПsin 26 и AЦПcos 27 идентичных параллельных каналов преобразования в соответствии с алгоритмом

(Asinα)2+(Acosα)2=A2(sin2α+cos2α)=A2,

где А - величины выходных сигналов параллельных каналов преобразования, формирующих синусоидальную и косинусоидальную зависимости от измеряемого угла.

Канал измерения воздушной скорости (фиг.6) выполнен в виде двух компараторов К 28 и К 29, входы которых подключены к выходам программируемых усилителей УП 22 и УП 23 канала точного измерения аэродинамического угла, выходы компараторов К 28 и К 29, являющиеся выходом по времени τх пролета ионной меткой расстояния R от точки генерации ионной метки до окружности с приемными электродами (фиг.2), подключены к вычислительному устройству ВУ, выход которого Nу R пропорционален воздушной скорости .

Меточный датчик аэродинамического угла и воздушной скорости работает следующим образом.

Меточный датчик аэродинамических углов и воздушной скорости устанавливается на летательном аппарате таким образом, чтобы система приемных электродов 1 (фиг.2) находилась в плоскости изменения аэродинамического угла α вектора воздушной скорости. Цикл измерения начинается с подачи с выхода вычислительного устройства ВУ 7 сигнала Fгм. В соответствии с сигналом Fгм генератор метки ГМ 8 выдает импульс высоковольтного напряжения на разрядник 2, установленный в точке генерации ионной метки. За счет искрового разряда разрядника 2 образуется ионизированная область - ионная метка с явно выраженным электростатическим зарядом qм. Заряженная ионная метка перемещается совместно с набегающим воздушным потоком и приобретает его параметры движения - скорость V и направление α относительно оси симметрии системы приемных электродов 1. При перемещении ионной метки совместно с набегающим воздушным потоком заряженная ионная метка пролетает вблизи приемных электродов и наводит (индуцирует) на них электрические заряды, величина которых зависит от расстояния ионной метки от приемного электрода и углового положения α траектории движения ионной метки.

За счет выбора конструктивных параметров системы приемных электродов (фиг.3) с помощью четных приемных электродов, например №№4, 8, 12, 16, формируются положительные полуволны (+sinα) синусоидальных угловых характеристик информативных сигналов U(α) (фиг.4) на выходе четных предварительных усилителей бока БПУ 3, например ПУ №№4, 8, 12, 16 (фиг.6). С помощью четных приемных электродов, например №№2, 6, 10, 14, формируются отрицательные полуволны (-sinα) синусоидальных угловых характеристик информативных сигналов U(α) (фиг.4) на выходе четных предварительных усилителей блока БПУ 3, например ПУ №№2, 6, 10, 14 (фиг.6).

С помощью нечетных приемных электродов, например №№1, 5, 9, 13, формируются положительные полуволны (+cosα) косинусоидальных угловых характеристик информативных сигналов U(α) на выходе нечетных предварительных усилителей, например ПУ №№1, 5, 9, 13 (фиг.6). С помощью нечетных приемных электродов, например №№3, 7, 11, 15, формируются отрицательные полуволны (-cosα) косинусоидальных угловых характеристик информативных сигналов U(α) на выходе нечетных предварительных усилителей, например ПУ №№3, 7, 11, 15 (фиг.6).

Выходные сигналы предварительных усилителей ПУ блока предварительных усилителей БПУ 3 (фиг.2) подаются на входы канала определения рабочего сектора (канал грубого отсчета) 6 измеряемого аэродинамического угла, канал точного измерения аэродинамического угла 4 и канал измерения воздушной скорости 5. Выходные сигналы указанных каналов подаются на входы вычислительного устройства ВУ 7, который по результатам обработки входной информации выдает цифровые коды Nα, Nv по измеряемому аэродинамическому углу α и воздушной скорости Vв.

При работе канала определения рабочего сектора измеряемого аэродинамического угла (фиг.5) выходные сигналы предварительных усилителей ПУ подаются на четыре идентичных канала, соответствующих одному из четырех рабочих секторов диапазона изменения измеряемого аэродинамического угла. Каждый i-ый из четырех идентичных каналов включает в себя сумматоры СУМ 13, дифференциальные усилители ДУi 14 и компараторы Кi 15. На входы сумматоров 13, подключенных к неинвертирующему (положительному) входу каждого i-го дифференциального усилителя ДУi 14 подаются сигналы от предварительных усилителей ПУ, подключенных к приемным электродам, расположенным в пределах i-го рабочего сектора диапазона измерения аэродинамического угла. Остальные приемные электроды подключены к предварительным усилителям, выходы которых подаются на вход сумматора 14, выходные сигналы которого подключены к инвентирующему (отрицательному) входу дифференциального усилителя ДУi.

При движении ионной метки в пределах i-го рабочего сектора выходной сигнал i-го дифференциального усилителя ДУi 14 будет положительным в пределах всего рабочего сектора. При выходе траектории движения ионной метки за пределы i-го рабочего сектора выходной сигнал i-го дифференциального усилителя ДУi 14 изменяет знак на противоположный. Следовательно положительный знак на выходе дифференциального усилителя ДУi 14 свидетельствует о попадании траектории движения ионной метки в i-ый рабочий сектор.

При положительном знаке выходного сигнала дифференциального усилителя ДУi 14 происходит срабатывание компаратора Ki 15, на выходе которого формируется сигнал (признак) попадания траектории ионной метки в сектор i, который подается на вход и фиксируется вычислительным устройством ВУ 7.

При выходе траектории движения ионной метки за пределы i-го рабочего сектора, она попадает в другой, например в i+1 сектор, что приведет к пропаданию сигнала (признака) i-го рабочего сектора и появлению сигнала (признака) (i+1)-го рабочего сектора.

При работе точного канала измерения аэродинамического угла реализуется интерполяционный метод преобразования и обработки информативных сигналов U(α), формируемых на выходе предварительных усилителей блока предварительных усилителей БПУ 3 (фиг.2).

Выходные сигналы четных предварительных усилителей ПУ №№4, 8, 12, 16 (фиг.6), формирующих положительную полуволну (+sinα) информативного сигнала U(α), и выходные сигналы четных предварительных усилителей ПУ №№2, 6, 10, 14, формирующих отрицательную полуволну (-sinα) информативного сигнала U(α), подаются на входы сумматоров СУМ +sin 16 и СУМ -sin 17, выходы которых подаются на вход дифференциального усилителя ДУ 20, на выходе которого формируются обе полуволны синусоидальной зависимости угловой характеристики i-го рабочего сектора диапазона измерения измеряемого аэродинамического угла, который поступает на вход программируемого усилителя УП 22, в котором нормируется по амплитуде с помощью сигнала управления АРУ, поступающего от вычислительного устройства ВУ 7. Пронормированный по амплитуде сигнал Asinα через интегратор ИHTsin 24, выполняющий функции фильтра нижних частот, очищается от пульсационных помех и подается на вход аналогоцифрового преобразователя АЦПsin 26, выходной сигнал в виде цифрового кода Nsinα, пропорционального Asinα, подается на вычислительное устройство ВУ 7.

По другому идентичному параллельному каналу преобразования (фиг.6) с помощью сумматоров СУМ +cos 18 и СУМ -cos 19, подключенных к выходам нечетных предварительных усилителей ПУ №№1, 5, 9, 13 и ПУ №№3, 7, 11, 15 и дифференциального усилителя ДУ 21, программируемого усилителя УП 23, интегратора ИHTcos 25 и аналогоцифрового преобразователя AЦПcos 27 формируется цифровой код Ncosα, пропорциональный Acosα, который подается на вычислительное устройство ВУ 7.

Цифровые сигналы, пропорциональные Asinα и Acosα, обрабатываются в вычислительном устройстве, на выходе которого выдается цифровой код Nαт, связанный значением αp измеряемого аэродинамического угла точного канала соотношением .

С учетом попадания траектории ионной метки в i-ый грубый канал текущее значение измеряемого аэродинамического угла определяется как

α=iαop,

где αо - угол, охватывающий рабочий сектор грубого канала отсчета (при i=4, αo=90°); i - номер рабочего сектора (i=1, 4).

При работе канала измерения воздушной скорости (фиг.6) используются выходные сигналы программируемых усилителей УП 21 и УП 22 канала точного измерения аэродинамического угла, которые подаются на входы компараторов К 28 и К 29, порог срабатывания которых настроен на значение нормируемой амплитуды А синусоидальных и косинусоидальных угловых характеристик Asinα и Acosα. При достижении уровня А выходных сигналов программируемых усилителей УП 21 и УП 22, что соответствует моменту времени τх пролета ионной меткой расстояния R от точки генерации ионной метки до окружности с приемными электродами, происходит срабатывание компараторов К 28 и К 29 и формирование интервала времени τv в вычислительном устройстве ВУ 7. В соответствии с интервалом времени τv в вычислительном устройстве вырабатывается цифровой код Nv, пропорциональный величине воздушной скорости .

Цифровые коды Nα и Nv подаются на средства отображения информации к другим потребителям.

Таким образом, меточный датчик аэродинамического угла и воздушной скорости не имеет выступающих в набегающий воздушный поток аэрометрических приемников, нарушающих аэродинамику летательного аппарата.

В меточном датчике аэродинамического угла и воздушной скорости реализуется кинематический метод измерения величины (модуля) и угла направления вектора воздушной скорости, при котором точность измерения аэродинамического угла и воздушной скорости не зависит от состояния окружающей среды (температуры, атмосферного давления, плотности, влажности и т.п.).

Выполнение системы приемных электродов в виде расположенных по окружности металлических пластин, установленных под отверстиями маски, позволяет сформировать логометрические информативные сигналы с синусоидальной и косинусоидальной угловыми характеристиками и за счет использования интерполяционной схемы и обработки обеспечить измерение аэродинамического угла во всем диапазоне его изменения, т.е. от 0 до 360° или ±180° без увеличения габаритных размеров системы приемных электродов. При этом конструктивное выполнение приемных электродов совместно с предварительными усилителями канала регистрации в виде автономных модулей, имеющих экранированный корпус, позволяет существенно повысить помехоустойчивость канала регистрации ионных меток и увеличить разрешающую способность по аэродинамическому углу и воздушной скорости при малых габаритах системы приемных электродов.

Выполнение измерительной схемы формирования выходных сигналов в виде канала определения рабочего сектора измеряемого угла, являющегося каналом грубого отсчета, и канала точного измерения аэродинамического угла в каждом из рабочих секторов, подключенных к вычислительному устройству, позволяет существенно повысить разрешающую способность по измеряемому аэродинамическому углу во всем диапазоне его изменения без увеличения числа приемных электродов и габаритных размеров системы приемных электродов.

Предложенное выполнение каналов определения рабочего сектора измеряемого угла и канала точного измерения аэродинамического угла внутри каждого рабочего сектора обеспечивает надежное определение рабочего сектора и точное измерение текущего значения аэродинамического угла внутри каждого рабочего сектора. При этом формирование в вычислительном устройстве сигнала автоматического регулирования коэффициентов усиления предварительных усилителей канала точного измерения угла в соответствии с предложенным алгоритмом также позволяет повысить точность измерения в широком диапазоне изменения величины воздушной скорости.

Предложенное выполнение канала измерения воздушной скорости позволяет с высокой точностью формировать интервал времени пролета ионной метки от точки генерации до окружности с приемными электродами при одновременном изменении аэродинамического угла, что повышает точность измерения воздушной скорости.

Применение меточного датчика аэродинамического угла и воздушной скорости на различных классах летательных аппаратов, в частности, на самолетах, позволяет расширить границу рабочих скоростей, повысить точность измерения параметров вектора воздушной скорости, улучшить качество пилотирования и эффективность решения тактико-технических задач полета.

1. Меточный датчик аэродинамического угла и воздушной скорости, содержащий генератор ионных меток, систему приемных электродов, канал регистрации ионных меток и измерительную схему формирования выходных сигналов, отличающийся тем, что система приемных электродов выполнена в виде круглых металлических пластин, которые расположены на одинаковом расстоянии по окружности с центром в точке генерации ионной метки и установлены непосредственно под отверстием металлической пластины-маски, закрепленной на диэлектрической плате, при этом приемные электроды соединены со входами предварительных усилителей канала регистрации ионных меток и выполнены совместно с ними в виде автономных модулей, имеющих экранирующий корпус, выходы предварительных усилителей через аналоговые ключи и сумматоры подключены ко входам дифференциальных усилителей канала регистрации ионных меток.

2. Меточный датчик аэродинамического угла и воздушной скорости по п.1, отличающийся тем, что измерительная схема формирования выходных сигналов выполнена в виде канала определения рабочего сектора измеряемого угла, являющегося каналом грубого отсчета, и канала точного измерения угла, подключенных ко входу вычислительного устройства, выходы которого являются цифровыми кодами по углу атаки и воздушной скорости.

3. Меточный датчик аэродинамического угла и воздушной скорости по п.2, отличающийся тем, что канал определения рабочего сектора измеряемого угла, являющийся каналом грубого отсчета, выполнен в виде четырех идентичных каналов, соответствующих одному из четырех рабочих секторов диапазона измерения аэродинамического угла, каждый из каналов включает в себя два сумматора, на вход первого из которых подключены выходы первых пяти модулей предварительных усилителей данного рабочего сектора, а на вход сумматора подключены выходы четных модулей предварительных усилителей данного рабочего сектора измеряемого угла, при этом выходы сумматоров каждого из четырех идентичных каналов подключены ко входам дифференциальных усилителей, выходы которых через коммутаторы подключены ко входу вычислительного устройства.

4. Меточный датчик аэродинамического угла и воздушной скорости по п.2, отличающийся тем, что канал точного измерения угла выполнен в виде двух идентичных параллельных каналов преобразования, первый из которых подключен к выходам четных модулей предварительных усилителей этого канала, формирующих информативный сигнал, величина которого имеет синусоидальную зависимость от измеряемого угла, а второй канал преобразования подключен к выходам нечетных модулей предварительных усилителей, формирующих информативный сигнал, величина которого имеет косинусоидальную зависимость от измеряемого угла, при этом канал преобразования, формирующий синусоидальную зависимость от измеряемого угла включает два сумматора, входы первого из них подключены к выходам четных модулей предварительных усилителей, формирующих синусоидальную зависимость от измеряемого угла со знаком плюс, а входы второго сумматора подключены к выходам четных модулей предварительных усилителей, формирующих синусоидальную зависимость от измеряемого угла со знаком минус, а канал преобразования, формирующий косинусоидальную зависимость от измеряемого угла, включает два сумматора, входы первого из них подключены к выходам нечетных модулей предварительных усилителей, формирующих косинусоидальную зависимость от измеряемого угла со знаком плюс, а входы второго сумматора подключены к выходам нечетных модулей предварительных усилителей, формирующих косинусоидальную зависимость от измеряемого угла со знаком минус, причем выходы сумматоров каждого из идентичных параллельных каналов преобразования подключены ко входам дифференциальных усилителей, выходы которых подключены ко входам программируемых усилителей, управляющие входы которых подключены к вычислительному устройству, а выходы программируемых усилителей через интеграторы и аналого-цифровые преобразователи подключены ко входу вычислительного устройства, который также управляет запуском аналого-цифровых преобразователей.

5. Меточный датчик аэродинамического угла и воздушной скорости по п.4, отличающийся тем, что сигнал, поступающий от вычислительного устройства на управляющий вход программируемых усилителей канала точного измерения угла, формируется вычислительным устройством по сигналам, поступающим с выходов аналого-цифровых преобразователей двух идентичных параллельных каналов преобразования, в соответствии с алгоритмом
(Asinα)2+(Acosα)2=A2(sin2α+cos2α)=A2, где
А - величины выходных сигналов параллельных каналов преобразования, формирующих синусоидальную и косинусоидальную зависимости от измеряемого угла α.

6. Меточный датчик аэродинамического угла и воздушной скорости по п.1, отличающийся тем, что канал измерения воздушной скорости выполнен в виде двух компараторов, входы которых подключены к выходам программируемых усилителей канала точного измерения аэродинамического угла, а выходы, являющиеся информативными сигналами по времени пролета ионной метки расстояния от точки генерации ионной метки до окружности с приемными электродами, подключены к вычислительному устройству.



 

Похожие патенты:

Изобретение относится к измерительным устройствам, в частности к устройствам для измерения высотно-скоростных параметров вертолета. .

Изобретение относится к области измерительной техники, предназначено для определения величины и направления скорости в потоках теплоносителя, например закрученных.

Изобретение относится к области измерительной техники, предназначено для определения величины и направления скорости в потоках теплоносителя, например, закрученных.

Изобретение относится к области измерительной техники и может найти применение, в частности, для измерения воздушно-скоростных параметров траектории полета самолета, в частности таких как скоростной напор, угол атаки, коэффициент подъемной силы, массы самолета, положение центра тяжести самолета и так далее.

Изобретение относится к области измерительной техники и может быть использовано для определения расхода газа или жидкости, в частности в промышленных магистральных трубопроводах.

Изобретение относится к области приборостроения, в частности к устройствам для измерения параметров потока газа в открытых и закрытых каналах. .

Изобретение относится к области авиации и, в частности, к определению воздушных параметров полета летательных аппаратов. .

Изобретение относится к области газовой динамики. .

Изобретение относится к области измерительной техники и может быть использовано для измерения параметров пространственного течения газообразных сред или для определения параметров движения твердых тел, самолетов, ракет и т.п.

Изобретение относится к области измерительной техники и может быть использовано для измерения параметров пространственного течения жидких и газообразных сред или для определения параметров движения твердых тел, судов, самолетов и т.п.

Изобретение относится к авиационной технике, а именно к способам определения динамики изменения газодинамических параметров потока в лопаточных машинах и каналах, например в лопаточных компрессорах, трубопроводах и диффузорах в заданных областях течения, как в пограничных зонах, так и в ядре газового потока, и может быть использовано для диагностирования технического состояния газотурбинных двигателей, исследования течения в трубопроводах и каналах с отрывом потока. Способ измерения параметров пульсирующего потока, заключается в том, что измеряют и регистрируют мгновенные значения трех компонент скорости потока (осевой, радиальной и окружной), пульсаций полного и статического давлений в любой плоскости относительно насадка. При этом используют приемное устройство насадка с не менее четырьмя датчиками пульсаций давления. Техническим результатом является повышение точности измерения газодинамических параметров потока, достоверности и информативности методов исследования структуры потока в компрессоре. 11 ил.
Наверх