Импульсный лавинный s-диод

Изобретение относится к импульсной технике и может быть использовано в источниках питания полупроводниковых лазеров, мощных полупроводниковых светодиодов, диодов Ганна, системах сверхширокополосной локации. Сущность изобретения: в структуре импульсного лавинного S-диода на основе арсенида галлия, легированного железом, между слоями π- и ν-типа дополнительно помещен слой π-типа с высоким удельным сопротивлением. Дополнительный слой π-типа с высоким удельным сопротивлением может быть получен легированием арсенида галлия n-типа примесью хрома. Техническим результатом изобретения является устранение влияния инжекции электронов на протекание тока при обратном смещении π-ν-перехода до переключения диода и повышение напряжения переключения. 1 з.п. ф-лы, 2 ил.

 

Изобретение относится к импульсной технике, в частности к полупроводниковым импульсным лавинным диодам, и предназначено для использования в импульсных источниках питания полупроводниковых лазеров, мощных полупроводниковых светодиодов, диодов Ганна, систем сверхширокополосной локации.

В устройствах целеуказания и дальнометрии различного гражданского и военного назначения часто стоит задача использования «коротких» сигналов высокой мощности. При этом малая длительность оптических импульсов (не более 1 нс) обеспечивает высокую точность при заданном быстродействии, а увеличение мощности обеспечивает увеличение дальности распространения сигнала. Для современных систем сверхширокополосной локации и активной локации в инфракрасном диапазоне требуются портативные микроэлектронные устройства, обеспечивающие надежную генерацию мощных субнаносекундных импульсов.

Известен лавинный транзистор, который представляет собой кремниевый или германиевый биполярный транзистор, с повышенной однородностью распределения электрического поля по площади коллекторного перехода. Особенностью такого прибора является возможность получения отрицательного сопротивления в цепи «эмиттер - коллектор». Малые размеры лавинных транзисторов позволяют создавать портативные схемы питания, однако максимально возможные импульсы тока в схемах импульсного питания, где ключевым элементом является лавинный транзистор, не превышают единиц ампер, а время нарастания импульса ограничивается временем пролета носителей заряда за счет дрейфа и оказывается не ниже 0.1 нс [1].

Наиболее близким к заявленному техническому решению является диод полупроводниковый импульсный лавинный (ДПИЛ) на основе бинарного полупроводникового соединения, арсенида галлия, который легирован мелкой донорной примесью и глубокой акцепторной примесью железа. Такой прибор изготавливается на основе π-ν-n-(n+-π-ν-n-) структуры, на обратной ветви вольтамперной характеристики которой наблюдается участок отрицательного дифференциального сопротивления [2, 3].

В ДПИЛ S-участок и связанное с ним быстрое переключение в проводящее состояние инициируется развитием лавинных процессов с последующей перезарядкой глубоких уровней в области объемного заряда π-ν-перехода. Быстродействие в этом случае определяется не дрейфовыми процессами, а прохождением волны ударной ионизации в области базы со скоростью, превышающей скорость дрейфа неравновесных электронов. Таким образом, времена переключения лавинных S-диодов существенно меньше времен переключения лавинных транзисторов и могут достигать 0,05 нс. Недостатком такого прибора является относительно малая амплитуда импульсов коммутируемого напряжения, обусловленная малым напряжением переключения (100-250 В). Диод полупроводниковый импульсный лавинный (ДПИЛ), описанный в [3], принят за прототип заявленного технического решения.

Технической задачей изобретения является устранение указанных недостатков лавинных импульсных S-диодов на основе арсенидгаллиевой структуры, полученной легированием примесями, повышение напряжения переключения, для чего следует устранить влияния инжекции электронов на протекание тока при обратном смещении π-ν-перехода до переключения S-диода.

В предлагаемом S-диоде это достигается тем, что между слоем π-типа, полученным легированием железом, и слоем ν-типа дополнительно помещен слой π-типа с высоким удельным сопротивлением.

Изобретение иллюстрируется рисунками.

На фиг.1 показано схематическое изображение заявленного импульсного лавинного S-диода. На фиг.2 показаны профили распределения примесей в предлагаемой структуре, полученной диффузионным способом.

Область π1 (см. фиг.1) получена легированием железом, ее удельное сопротивление составляет 104-105 Ом·см. Для области π2 удельное сопротивление составляет 104-105 Ом·см. При подаче обратного смещения на π-ν-переход основное падение напряжения происходит на высокоомной области π2 и области объемного заряда (ООЗ) π-ν-перехода. Вследствие этого напряжение переключения повышается, а инжекция электронов с контакта (слева от области π1) до развития лавинного пробоя незначительна.

Таким образом, сущность изобретения заключается в следующем: в диоде создают дополнительную область π2 с высоким значением удельного сопротивления, например 108-109 Ом·см. Слой π-типа с высоким удельным сопротивлением может быть создан известными методами, например, легированием арсенида галлия n-типа примесью хрома.

Снижение влияния инжекции из контакта (слева от области π1 на фиг.1) в базу при обратном смещении π-ν-перехода происходит по двум причинам. С одной стороны, легирование железом приводит к ограничению распространения поля в базу по сравнению со структурой, легированной только хромом. С другой стороны, повышается барьер для инжекции неосновных носителей электронов на величину ΔЕ=ECr-EFe≈0.25 эВ (ECr, EFe - энергетические уровни в запрещенной зоне GaAs для примесей хрома и железа, равные 0.75 и 0.5 эВ соответственно). В этом случае, пока сопротивление ООЗ π-ν-перехода много больше сопротивления низкоомной части базы, протекающий ток обусловлен преимущественно генерационными процессами в области объемного заряда. При повышении напряжения смещения в структуре диода последовательно протекают:

- генерационный ток;

- ток, обусловленный эффектом Пула-Френкеля;

- ток лавинного микроплазменного пробоя.

При достижении критического значения напряженности поля, когда за счет микроплазменного пробоя дифференциальное сопротивление ООЗ обратносмещенного π-ν-перехода резко уменьшается с увеличением напряжения смещения (dU/dI=exp(-γU)/(Ioγ), где U, I - напряжение смещения и сила тока, Io, γ - константы), в области объемного заряда электроны, инжектированные с контакта, инициируют переключение структуры по механизму, аналогичному для структур, легированных железом.

Структуру по изобретению можно получать при помощи различных технологических методов (диффузионных и эпитаксиальных).

Пример получения лавинного S-диода диффузионным методом поясняется на фигуре 2, где представлен вид распределения легирующих примесей при диффузионном легировании GaAs. Здесь NSn - концентрация мелкого донора (олова); NCr - концентрация глубокого акцептора (хрома); NFe - концентрация глубокого акцептора (железа); область πFe соответствует области π1 (см. фиг.1); область πCr соответствует области π2 (см. фиг.1).

Сначала в GaAs n-типа проводится диффузия хрома, например, на глубину 50 мкм при температуре 970°С (приблизительное время диффузии - 120 минут). Далее проводится диффузия железа в данную структуру, например, на глубину 30 мкм при температуре около 1000°С (приблизительное время диффузии - 7 минут). Так как коэффициент диффузии хрома много меньше коэффициента диффузии железа при данных условиях, то за время диффузии железа профиль хрома практически не изменяется. Толщина области π1 для данного случая составляет около 30 мкм, толщина области π2 - 20 мкм, градиент концентрации примеси хрома в ООЗ равен 9·1018 см-4. Напряжения переключения S-диодов с рассмотренной структурой составляют в среднем 300-400 В при токах переключения Iп<10-6 А, что в 2-2,5 раза выше, чем у прототипа.

Управление напряжением переключения в заявленной структуре осуществляется изменением толщины упомянутого высокоомного слоя при постоянном градиенте концентрации примеси в области π-ν-перехода. Эксперименты показывают, что при легировании примесью хрома напряжение переключения увеличивается пропорционально толщине πCr-слоя. Максимальные значения напряжения переключения таких структур, достигнутые в режиме автогенерации, достигают 640 В. При этом рабочие частоты составляют от 1 до 5 кГц, максимальные импульсные токи - до 40 А при скважности 105.

Техническим результатом изобретения являются устранение влияния инжекции электронов на протекание тока при обратном смещении π-ν-перехода до переключения S-диода и повышение напряжения переключения по сравнению со структурами, полученными легированием GaAs железом.

Источники информации

1. Пикосекундная импульсная техника. / Под ред. В.Н.Ильюшенко. - М.: Энергоатомиздат, 1993, с.263.

2. Полупроводниковые приборы. Сверхвысокочастотные диоды. Справочник. / Под ред. Б.А.Наливайко. - Томск: МГП «РАСКО», 1992 - с.74-75.

3. Л.П.Иванов и др. Диод из арсенида галлия, легированного глубокими примесями для генерации токовых импульсов. Сб. Труды НИИПП, вып.3 ч.I, 1973,с.158.

1. Импульсный лавинный S-диод на основе арсенида галлия, легированного железом, отличающийся тем, что между слоями π- и ν-типа дополнительно помещен слой π-типа с высоким удельным сопротивлением.

2. Импульсный лавинный S-диод по п.1, отличающийся тем, что дополнительный слой π-типа с высоким удельным сопротивлением получен легированием арсенида галлия n-типа примесью хрома.



 

Похожие патенты:

Изобретение относится к электронным приборам, в частности к полупроводниковым приборам, и может быть использовано для выпрямления переменного тока в радиоаппаратуре, радиоизмерительных приборах и системах.

Изобретение относится к технологическим процессам производства компонентов микроэлектроники и вычислительных схем. .

Изобретение относится к электронным приборам, в частности к полупроводниковым приборам, и может быть использовано для выпрямления переменного тока и преобразования ВЧ-сигнала в постоянное напряжение в источниках питания радиоаппаратуры, радиоизмерительных приборах и системах.

Изобретение относится к электронным приборам, в частности к полупроводниковым приборам, и может быть использовано для выпрямления переменного тока и преобразования ВЧ-сигнала в постоянное напряжение в источниках питания радиоаппаратуры, радиоизмерительных приборах и системах.

Изобретение относится к области силовой промышленной электронной техники. .

Изобретение относится к области конструирования полупроводниковых приборов и может быть использовано в производстве мощных кремниевых диодов с улучшенной термостабильностью.

Изобретение относится к промышленной электронике и может быть использовано в электрических устройствах, эксплуатируемых в экстремальных условиях: космос, повышенная радиация, высокие температуры.

Изобретение относится к области полупроводниковых ограничителей напряжения и может быть использовано при защите электронных устройств от перенапряжений, а также при конструировании и технологии создания названных приборов.

Изобретение относится к области мощных полупроводниковых приборов и может быть использовано при конструировании высоковольтных импульсных полупроводниковых симметричных ограничителей напряжения с малым значением динамического сопротивления и увеличенной энергией лавинного пробоя.

Изобретение относится к области дискретных полупроводниковых приборов, в частности к блокирующим диодам для солнечных батарей космических аппаратов

Изобретение относится к полупроводниковым приборам, в частности, к формированию самосовмещенных высоковольтных диодов

Изобретение относится к области полупроводниковых приборов. Мультиэпитаксиальная структура кристалла двухинжекционного высоковольтного гипербыстровосстанавливающегося диода на основе соединений галлия и мышьяка содержит высоколегированную монокристаллическую подложку p+-типа проводимости, с разностной концентрацией акцепторной и донорной легирующих примесей не менее чем 3·1018 см-3 и толщиной не менее 200 мкм, выполненный на ней эпитаксиальный GaAs слой p-типа проводимости толщиной не менее 5,0 мкм и изменяющейся разностной концентрацией донорной и акцепторной легирующих примесей от концентрации в подложке до значений не более чем , p-n-переходный по типу проводимости эпитаксиальный GaAs i-слой толщиной 5÷100 мкм, содержащий область пространственного заряда и внутрирасположенную мультиэпитаксиальную металлургическую переходную зону, и эпитаксиальный GaAs слой на p-n переходном эпитаксиальном i-слое, выполненный n+-типа проводимости с разностной концентрацией акцепторной и донорной легирующих примесей в приповерхностном слое не менее чем 1·1017 см-3 и толщиной не менее 0,1 мкм. Изобретение обеспечивает снижение прямого падения напряжения, повышение плотности тока прямого включения и повышение быстродействия. 1 з.п. ф-лы, 3 ил.

Изобретение относится к области полупроводниковой электроники. В диоде с отрицательным дифференциальным сопротивлением согласно изобретению объединены два комплементарных полевых транзистора в единую вертикальную структуру с параллельно расположенными каналами, между которыми образуется электрический переход, при этом исток р-канала расположен напротив стока n-канала, а сток р-канала - напротив истока n-канала. Истоки каналов соединены между собой с помощью проводника и дополнительной области с n+-типом проводимости, на которой расположен исток n-канала, а стоки каналов имеют отдельные выводы. Изобретение позволяет уменьшить размеры, повысить быстродействие и увеличить ток и выходную мощность диода. 1 з.п. ф-лы, 3 ил.

Изобретение относится к полупроводниковым электронным приборам. В полупроводниковом диоде на полупроводниковой GaAs подложке расположены катодный слой, обедненный слой, барьерный слой, обедненный узкозонный слой, анодный узкозоный слой, анодный слой. Металлизированный катодный контакт с омическим сопротивлением сформирован к катодному слою. Металлизированный анодный контакт с омическим сопротивлением сформирован к анодному слою. На границе анодного слоя и анодного узкозонного слоя и на границе барьерного слоя и обедненного узкозонного слоя сформированы гетеропереходы. Технический результат - снижение обратного тока и увеличение пробивного напряжения диода. 1 з.п. ф-лы, 6 ил., 2 табл.

Изобретение относится к полупроводниковым приборам. В полупроводниковом конструктивном элементе, имеющем полупроводниковое тело (21) с первой стороной (22), второй стороной (23) и краем (24), внутреннюю зону (27) с основным легированием первого типа проводимости, расположенную между первой стороной (22) и внутренней зоной (27) первую полупроводниковую зону (61) первого типа проводимости с концентрацией легирования, которая выше концентрации легирования внутренней зоны (27), расположенную между второй стороной (23) и внутренней зоной (27) вторую полупроводниковую зону (29) второго типа проводимости, с концентрацией легирования выше концентрации легирования внутренней зоны (27), по меньшей мере один первый краевой скос, который проходит под первым углом (30) к плоскости прохождения перехода от второй полупроводниковой зоны (29) к внутренней зоне (27) по меньшей мере вдоль края (24) второй полупроводниковой зоны (29) и внутренней зоны (27), второй краевой скос со вторым углом (71), величина которого меньше величины первого угла, который проходит вдоль края (24) первой полупроводниковой зоны (61) или скрытой полупроводниковой зоны (41), при этом по меньшей мере одна скрытая полупроводниковая зона (41) второго типа проводимости с концентрацией легирования, которая выше, чем во внутренней зоне (27), предусмотрена между первой полупроводниковой зоной (61) и внутренней зоной (27) и проходит по существу параллельно первой полупроводниковой зоне (61). Изобретение позволяет исключить повышенные пики силы поля в краевой области, возникающие во время процесса выключения полупроводникового конструктивного элемента, а также обеспечивает повышенную воспроизводимость и меньший разброс электрических свойств. 9 з.п. ф-лы, 7 ил.

Изобретение относится к импульсной технике, в частности к импульсным лавинным полупроводниковым диодам, полученным легированием GaAs хромом или железом, и предназначено для использования в системах силовой импульсной электроники. Техническим результатом являются устранение влияния инжекции электронов на протекание тока при обратном смещении π-ν-перехода до переключения S-диода, повышение напряжения переключения по сравнению со структурами, полученными легированием только хромом или железом, повышение надежности работы таких структур в схемах импульсного питания. В S-диоде, выполненном на основе n-π-ν-n-структуры из арсенида галлия, компенсированного хромом, между n- и π-областями введена дополнительная область p-типа проводимости, толщина этого p-слоя не превышает 5·Ln, где Ln – диффузионная длина электронов в p-области. 2 ил.

Изобретение относится к быстродействующим диодам. Диод содержит полупроводниковый слой, имеющий первую сторону и противоположную первой стороне вторую сторону, полупроводниковый слой имеет толщину между первой стороной и второй стороной, при этом толщина полупроводникового слоя сравнима со средней длиной свободного пробега носителей заряда, эмитированного в полупроводниковый слой. Диод содержит первый металлический слой, осажденный на первой стороне полупроводникового слоя, второй металлический слой, осажденный на второй стороне полупроводникового слоя, первый гетеропереход между полупроводниковым слоем и первым металлическим слоем или между полупроводниковым слоем и вторым металлическим слоем, причем полупроводниковый слой, первый металлический слой и второй металлический слой выполнены с возможностью осуществления баллистической проводимости носителя заряда из первого металлического слоя через полупроводниковый слой во второй металлический слой. Изобретение обеспечивает получение диода с высокой плотностью тока термоионной эмиссии, высокой нелинейностью и выпрямлением. 5 н. и 20 з.п. ф-лы, 7 ил., 1 табл.
Наверх