Способ получения жидких углеводородов


 


Владельцы патента RU 2446135:

Общество с ограниченной ответственностью Производственный научно-технический центр "ЭОН" (ООО ПНТЦ "ЭОН") (RU)

Изобретение относится к способу получения бензина или его компонентов с октановым числом 92-93 по исследовательскому методу из сырья, содержащего диметиловый эфир, в присутствии катализаторов на основе цеолита типа ZSM-5 с SiO2/Al2O3=60-83, содержащего не более 23,0% оксида алюминия, не более 0,09% оксида натрия и цинк в пределах 2-5%, при этом процесс ведут при температуре 300-400°С и давлении 2,5-4,5 МПа. Настоящий способ позволяет повысить производительность конверсии диметилового эфира в бензин. 13 пр.

 

Изобретение относится к области нефтехимической и нефтеперерабатывающей промышленности, а более конкретно к области получения синтетического моторного топлива из газового углеводородного сырья.

Проблема получения жидких продуктов различного назначения из газового углеводородного сырья уже много десятилетий находится в поле зрения исследователей практически всех промышленно развитых стран мира. Относительно топливного направления переработки углеводородных газов экономисты обычно отмечают, что такое производство само по себе находится на пределе рентабельности и не может конкурировать с топливами, получаемыми из нефти. В то же время отмечается, что топливный рынок может принять практически любое количество бензина и других видов моторного топлива, в то время как емкость рынка других химических продуктов ограничена.

При анализе экономического аспекта проблемы необходимо учитывать также стоимостные показатели для моторных топлив в отдаленных и труднодоступных районах, а также экологические проблемы, связанные с большим количеством попутных нефтяных газов, зачастую сжигаемых на факелах, в частности на морских платформах. Другим аспектом экологии в свете возможности синтетических моторных топлив является их преимущество перед топливами из нефти в отношении чистоты выхлопных газов.

По этим причинам в последние годы XX века интерес к промышленному использованию углеводородных нефтяных газов в качестве сырья для получения моторных топлив получил новый импульс в ряде индустриально развитых стран мира, в том числе и в России.

Из анализа патентной и научно-технической литературы следует, что реализованная в промышленности классическая схема получения моторных топлив из углеводородного газового сырья включает стадии получения синтез-газа, получения жидких углеводородных продуктов в той или иной модификации синтеза Фишера-Тропша и, наконец, получения моторного топлива нужного качества. Известно использование угля в качестве сырья при получении синтез-газа, однако это не меняет общего построения технологической схемы. Известно также, что автомобильный бензин может быть получен в последовательности процессов: получение синтез-газа, синтез кислородсодержащих продуктов (метанола или диметилового эфира), получение бензина.

Процесс получения бензина из диметилового эфира начинается с реакции его дегидратации

(СН3)2О=С2Н4+H2O,

в результате которой происходит переход от кислородсодержащего продукта к углеводороду. Затем происходит сложная последовательность реакций олигомеризации, циклизации, диспропорционирования и изомеризации, в результате которых окончательно формируется индивидуальный и фракционный состав бензина.

Известен способ получения изопарафиновых углеводородов из диметилового эфира, описанный в US 4579999 [1].

В соответствии с описанием к патенту диметиловый эфир на высококремнеземном катализаторе ZSM-5 на первой стадии превращается в смесь олефинов С24 и углеводородов С5+. Полученная смесь олефинов направляется на олигомеризацию с использованием среднепористого кислотного цеолитного катализатора. Вторую стадию процесса проводят при повышенном давлении и умеренных температурах. Предусмотрен также рецикл легких углеводородов на первую стадию процесса. Недостатком описанного способа является его многостадийность.

Известен способ получения жидких углеводородов из диметилового эфира в присутствии катализатора, при котором используют катализатор на основе кристаллического алюмосиликата типа пентасилов с мольным отношением SiO2/Al2O3=25-100, содержащего 0,05-0,1 мас.% оксида натрия и связующего компонента, который дополнительно содержит оксид цинка и оксиды редкоземельных элементов при следующем соотношении компонентов, мас.%:

ZnO - 0.5-3.0

оксиды РЗЭ - 0,1-5,0

кристаллический алюмосиликат - 65-70

связующее - остальное

Катализатор активируют на воздухе, при температуре 540-560°С. Процесс осуществляется при давлении 0,1-10 МПа, температуре 250-400°С, объемной скорости подачи сырья 250-1100 ч-1 (RU 2160160 [2]).

В результате каталитического превращения ДМЭ (98-100%) получают следующие углеводородные продукты (вес.% в смеси углеводородов): C1-C4 - 7,6-16,6, н-парафины С5+ - 2,1-3,2, изопарафины С5+ - 31,1-34,3, прочие С5+ - 20,8-40,0, ароматические С6+ - 15,6-28,8.

Недостатком описанного способа является относительно невысокое содержание изопарафинов: в жидких продуктах процесса оно не превышает 34%.

Наиболее близким к предлагаемому изобретению является способ получения высокооктановых автомобильных бензинов, известный из RU 2248341 [3]. В соответствии с описанием к патенту для получения экологически чистого высокооктанового бензина из сырья, содержащего диметиловый эфир, в проточном изотермическом реакторе высокого давления при температуре 320-380°С, давлении 5-10 МПа, объемной скорости подачи сырья 1000-4000 ч-1 используют катализатор на основе цеолитов типа пентасилов с SiO2/Al2O3=25-100, содержащий не более 0,11 мас.% оксида натрия, 0,1-3 мас.% оксида цинка, который дополнительно содержит палладий и другие компоненты в следующих соотношениях (мас.%): оксид цинка 0,1-3; палладий 0,1-1%; цеолит 50-70; связующее - остальное. Перед опытом проводят активацию катализатора в потоке водорода (р=1 атм, v=5 л/ч) при подъеме температуры 50°С в час. По достижении рабочей температуры катализатор выдерживают в этом режиме в течение 3 часов. Затем подачу водорода прекращают и начинают подачу исходного сырья. В качестве сырья используют газовую смесь, образовавшуюся в процессе синтеза ДМЭ из СО и Н2 в проточном реакторе, включенном в схему.

Недостатком известного способа является его относительно невысокая производительность.

Заявляемый способ получения бензина или его компонентов направлен на повышение производительности (конверсии ДМЭ в жидкие углеводороды, например бензин).

Указанный результат достигается тем, что способ получения бензина или его компонентов с октановым числом 92-93 по исследовательскому методу из сырья, содержащего диметиловый эфир, осуществляют в присутствии катализаторов на основе цеолита типа ZSM-5 с SiO2/Al2O3=60-83, содержащего не более (масс. доля) 23,0% оксида алюминия, не более 0,09% оксида натрия и цинк в пределах 2-5%, при этом процесс ведут при температуре 300-400°С и давлении 2,5-4,5 МПа.

Используемый в заявляемом способе катализатор серийно выпускается ОАО «Новосибирский завод химконцентратов» под маркой ИК-17-М, имеет указанный выше состав и предназначен для переработки пропан-бутановой фракции и позволяет получать с высоким выходом концентрат ароматических углеводородов.

Совершенно неожиданно авторами было установлено, что этот катализатор может быть использован в переработке сырья, содержащего диметиловый эфир, для получения бензина или его компонентов с октановым числом 92-93, причем с более высокой производительностью, чем по способу, выбранному за прототип. Это может быть объяснено сочетанием входящих в состав катализатора компонентов и их количественным содержанием в катализаторе. Получаемый таким образом бензин и его компоненты имеют более высокое качество, так как не требуют какой-либо ректификации в дальнейшем.

Авторами было установлено, что при использовании упомянутого катализатора процесс получения бензина или его компонентов с октановым числом 92-93 по исследовательскому методу из сырья, содержащего диметиловый эфир, следует вести при температуре 300-400°С и давлении 2,5-4,5 МПа. Если температура процесса будет ниже 300°С, то производительность способа снижается и становится сравнимой с производительностью способа, взятого в качестве прототипа. Проведение процесса при температуре выше 400°С является нецелесообразным, так как при этом происходит сдвиг реакции в сторону образования ароматических соединений. Если осуществлять процесс получения при давлении ниже 2,5 МПа, то так же, как и в случае снижения температуры процесса ниже 300°С, производительность способа снижается. Если осуществлять процесс получения при давлении выше 4,5 МПа, то так же, как и в случае повышения температуры процесса выше 400°С, процесс сдвигается в сторону образования высокомолекулярных ароматических соединений.

Сущность заявляемого способа получения бензина или его компонентов с октановым числом 92-93 по исследовательскому методу из сырья, содержащего диметиловый эфир, поясняется примерами его реализации

Пример 1. В самом общем случае заявляемый способ получения бензина или его компонентов реализовывался следующим образом.

Проточный каталитический реактор установки, предназначенный для конверсии ДМЭ в бензиновую фракцию, представляет собой цилиндрический аппарат с рабочим давлением до 100 атмосфер, состоящий из катализаторной кассеты и теплообменника, гарантирующего необходимую температуру на выходе из реактора. В каталитическом реакторе проводили процесс превращения реакционного сырья (состоявшего из 95% диметилового эфира, полученного межмолекулярной дегидратацией метанола, соответствующего ГОСТ 2222-95 и 5% непрореагировавшего метанола) в бензин или его компоненты в присутствии катализатора марки ИК-17-М, выпускаемого ОАО «Новосибирский завод химконцентратов», при температуре 300-400°С, давлении 2,5-4,5 МПа и объемной скорости по сырью 0,2-0,8 час-1. Предварительной активации катализатора не проводилось.

В результате в реакторе осуществлялось протекание комплекса реакций. Сначала происходит реакция дегидратации ДМЭ

(СН3)2O=С2Н42О,

в результате которой происходит переход от кислородсодержащего продукта к углеводороду. Затем происходит сложная последовательность реакций олигомеризации, циклизации, диспропорционирования и изомеризации, в результате которых окончательно формируется индивидуальный фракционный состав бензина.

Конверсия ДМЭ была равна 95% и более, выход бензиновой фракции - 95,5% и более, выход сухих газов C13 составлял 4,5%. Важно отметить тот факт, что бензин, получаемый согласно предлагаемому способу, по такой важной экологической характеристике, как содержание серы (менее 0,5 ppm), существенно превосходит все виды топлив для карбюраторных двигателей и имеет октановое число 92-93 по исследовательскому методу. Таким образом, было достигнуто повышение конверсии ДМЭ до величины 95-98% (в то время как производительность по способу прототипа равнялась 85%).

Пример 2. Способ осуществлялся следующим образом. В проточный каталитический реактор, описанный в примере 1, загружали 4 кг катализатора марки ИК-17-М (предварительно выдержанного в атмосфере инертного газа при температуре 300°С в течение 3 часов), который засыпали в кассету, неподвижно устанавливаемую на пути газового потока. Внутренний объем каталитической кассеты реактора, равный 5 л, нагревали до температуры 300°С. На вход реактора подавали исходную реакционную смесь, содержащую 95% об. ДМЭ и 5% СН3ОН, компримировали до давления 3 МПа и подавали на вход реактора со скоростью 2,45 м3/час (при нормальных условиях). В результате на выходе получали бензиновую фракцию следующего состава: 45% изопарафинов, 34% ароматических углеводородов (бензол отсутствовал полностью), 12% нафтенов и 9% н-парафинов. Конверсия по бензину составила 95%.

Пример 3. Для сравнения был проведен эксперимент по реализации способа, выбранного за прототип. Использовался катализатор на основе типа пентасилов с SiO2/Al2O3=25-100, содержащий не более 0,11 мас.% оксида натрия, 0,1-3 мас.% оксида цинка; 0,1-1 мас.% палладия.

Сырье состава, указанного выше в примере 2, подавалось на вход реактора при температуре 350°С, давлении 7 МПа, объемной скорости сырья как в примере 2. Перед опытом провели активацию катализатора в потоке водорода (р=1 атм, v=5 л/ч) при подъеме температуры 50°С, как это указано в описании RU 2248341 [3]. По достижении рабочей температуры катализатор выдерживали в этом режиме в течение 3 часов. Затем подачу водорода прекратили и начали подачу исходного сырья. В результате на выходе получали бензиновую фракцию следующего состава: 34% изопарафинов, 11% н-парафинов, 46% ароматических углеводородов и 10% нафтенов. Конверсия по бензину составила 85%.

Пример 4. Способ осуществлялся, как описано в примере 2, но при следующих параметрах: температура - 300°С, давление - 3 МПа. В результате на выходе получали бензиновую фракцию следующего состава: 45% изопарафинов, 9% н-парафинов, 34% ароматических углеводородов и 12% нафтенов. Конверсия по бензину составила 96%.

Пример 5. Способ осуществлялся, как описано в примере 2, но при следующих параметрах: температура - 350°С, давление - 3 МПа. В результате на выходе получали бензиновую фракцию следующего состава: 38% изопарафинов, 9% н-парафинов, 41% ароматических углеводородов и 11% нафтенов. Конверсия по бензину составила 98%.

Пример 6. Способ осуществлялся, как описано в примере 2, но при следующих параметрах: температура - 400°С, давление - 3 МПа. В результате на выходе получали бензиновую фракцию следующего состава: 34% изопарафинов, 9% н-парафинов, 45% ароматических углеводородов и 11% нафтенов. Конверсия по бензину составила 99%.

Пример 7. Способ осуществлялся, как описано в примере 2, но при следующих параметрах: температура - 410°С, давление - 3 МПа. В результате на выходе получали бензиновую фракцию следующего состава: 34% изопарафинов, 9% н-парафинов, 46% ароматических углеводородов и 10% нафтенов. Конверсия по бензину составила 100%.

Пример 8. Способ осуществлялся, как описано в примере 2, но при следующих параметрах; температура - 310°С, давление - 2,2 МПа. В результате на выходе получали бензиновую фракцию следующего состава: 44% изопарафинов, 10% н-парафинов, 33% ароматических углеводородов и 13% нафтенов. Конверсия по бензину составила 82%.

Пример 9. Способ осуществлялся, как описано в примере 2, но при следующих параметрах: температура - 350°С, давление - 2,5 МПа. В результате на выходе получали бензиновую фракцию следующего состава: 45% изопарафинов, 10% н-парафинов, 34% ароматических углеводородов и 11% нафтенов. Конверсия по бензину составила 86%.

Пример 10. Способ осуществлялся, как описано в примере 2, но при следующих параметрах: температура - 350°С, давление - 3,5 МПа. В результате на выходе получали бензиновую фракцию следующего состава: 37% изопарафинов, 9% н-парафинов, 42% ароматических углеводородов и 11% нафтенов. Конверсия по бензину составила 98%.

Пример 11. Способ осуществлялся, как описано в примере 2, но при следующих параметрах: температура - 350°С, давление - 4,0 МПа. В результате на выходе получали бензиновую фракцию следующего состава: 35% изопарафинов, 9% н-парафинов, 44% ароматических углеводородов и 11% нафтенов. Конверсия по бензину составила 98%.

Пример 12. Способ осуществлялся, как описано в примере 2, но при следующих параметрах: температура - 350°С, давление - 4,5 МПа. В результате на выходе получали бензиновую фракцию следующего состава: 33% изопарафинов, 9% н-парафинов, 46% ароматических углеводородов и 11% нафтенов. Конверсия по бензину составила 99%.

Пример 13. Способ осуществлялся, как описано в примере 2, но при следующих параметрах: температура - 350°С, давление - 4,6 МПа. В результате на выходе получали бензиновую фракцию следующего состава: 32% изопарафинов, 9% н-парафинов, 47% ароматических углеводородов и 11% нафтенов. Конверсия по бензину составила 100%.

Способ получения бензина или его компонентов с октановым числом 92-93 по исследовательскому методу из сырья, содержащего диметиловый эфир, в присутствии катализаторов на основе цеолита типа ZSM-5 с SiO2/Al2O3=60-83, содержащего не более 23,0% оксида алюминия, не более 0,09% оксида натрия и цинк в пределах 2-5%, при этом процесс ведут при температуре 300-400°С и давлении 2,5-4,5 МПа.



 

Похожие патенты:
Изобретение относится к области топлив, которые применяются в двигателях внутреннего сгорания с искровым воспламенением. .

Изобретение относится к способу превращения смеси углеводородной загрузки, содержащей линейные и разветвленные олефины, включающие от 4 до 15 атомов углерода, причем вышеупомянутый способ содержит следующие стадии: а) селективное образование простых эфиров большинства разветвленных олефинов, присутствующих в вышеупомянутой загрузке, b) обработка линейных олефинов, содержащихся в вышеупомянутой загрузке, в условиях умеренной олигомеризации, с) разделение эфлюента, полученного на стадии b), по меньшей мере на две фракции: фракцию , содержащую углеводороды, конечная температура кипения которых меньше температуры, находящейся в интервале от 150 до 200°С, фракцию , содержащую по меньшей мере часть углеводородов, начальная температура кипения которых больше температуры, находящейся в интервале от 150 до 200°С, d) обработка углеводородной фракции, содержащей простые эфиры, образовавшиеся на стадии а), в условиях по меньшей мере частичного крекинга простых эфиров, при этом вышеупомянутая обработка сопровождается разделением на бензиновую фракцию с улучшенным октановым числом и на фракцию, содержащую исходный спирт, е) гидрирование фракции в условиях получения газойля с высоким цетановым числом и удаление по меньшей мере части азотсодержащих или основных примесей, содержащихся в исходной углеводородной загрузке.

Изобретение относится к топливным композициям, в частности к бензиновой композиции, для применения на транспорте, например в автомобилях или самолётах. .

Топливо // 2241736
Изобретение относится к области нефтепереработки, а также к автомобильной промышленности, конкретно, к составу топлива, предназначенному для использования в карбюраторных двигателях автомобилей.

Изобретение относится к области моторных топлив. .

Топливо // 2186091

Изобретение относится к получению автобензинов без добавления тетраэтилсвинца и может быть использовано в нефтеперерабатывающей и нефтехимической промышленностях.

Изобретение относится к нефтяной промышленности, преимущественно к промысловой подготовке нефтей с применением деэмульгаторов. .
Изобретение относится к переработке различного нефтяного сырья, а именно газовых конденсатов и нефтяных дистиллятов с концом кипения не выше 400°С, в высокооктановые бензины, дизельное топливо марки «А» или топлива для реактивных двигателей.
Изобретение относится к переработке различного нефтяного сырья, а именно газовых конденсатов и нефтяных дистиллятов с концом кипения не выше 400°С, в высокооктановые бензины, дизельное топливо марки «А» или топлива для реактивных двигателей.

Изобретение относится к области деэмульсации нефти (обезвоживание, обессоливание и очистка от механических примесей), а также к новым составам деэмульгаторов для разрушения стойких нефтяных эмульсий.

Изобретение относится к области очистки жидких углеводородов и может быть использовано в энергетике, нефтяной, авиационной, автомобильной, электротехнической, пищевой, микробиологической и медицинской промышленности для разделения, очистки и регенерации углеводородных жидкостей минерального и растительного происхождения и, в частности, нефти и нефтепродуктов.

Изобретение относится к области очистки жидких углеводородов и может быть использовано в энергетике, нефтяной, авиационной, автомобильной, электротехнической, пищевой, микробиологической и медицинской промышленности для разделения, очистки и регенерации углеводородных жидкостей минерального и растительного происхождения и, в частности, нефти и нефтепродуктов.

Изобретение относится к энергоэффективному процессу производства различных видов реактивного топлива с использованием биологических жирных кислот в качестве источника.
Изобретение относится к нефтеперерабатывающей и нефтехимической промышленности, в частности к методам получения высокооктановых компонентов бензинов из узких бензиновых фракций.
Изобретение относится к нефтеперерабатывающей и нефтехимической промышленности, в частности к методам получения высокооктановых компонентов бензинов из узких бензиновых фракций.

Изобретение относится к области нефтехимии. .

Изобретение относится к способу получения алкилбензина путем алкилирования изобутана олефинами в каталитическом реакторе при повышенной температуре и давлении, в котором изобутан подают в верхнюю секцию реактора и последовательно пропускают через все секции с катализатором, а олефинсодержащее сырье распределяют на несколько потоков, число которых равно числу секций катализатора, и подают одновременно в секции с катализатором параллельными потоками для проведения реакции алкилирования, углеводородный поток, содержащий непрореагировавший изобутан и продукты реакции, разделяют на два потока: паровой, полученный путем испарения изобутана, который затем конденсируют и направляют на рецикл, и жидкостной, представляющий собой продукты реакции, который выводят из реакционной системы или частично направляют на рецикл.

Изобретение относится к способу получения пропана из этан-пропановой фракции и способу переработки углеводородного сырья. .

Изобретение относится к способу переработки газообразных алканов путем воздействия ионизирующим излучением на содержащую их сырьевую смесь с получением продуктов радиолиза, в процессе которого из продуктов радиолиза постоянно удаляют водород и конденсируемую фракцию, являющуюся целевым продуктом, а оставшуюся часть смешивают с исходной смесью, содержащей алканы, с получением сырьевой смеси, характеризующемуся тем, что воздействие ионизирующим излучением осуществляют при температуре реакционной смеси не ниже минимальной температуры конденсации низших спиртов и эфиров и не выше 350°С.
Наверх