Оптоэлектронный нечеткий процессор



Оптоэлектронный нечеткий процессор
Оптоэлектронный нечеткий процессор
Оптоэлектронный нечеткий процессор
Оптоэлектронный нечеткий процессор
Оптоэлектронный нечеткий процессор

 


Владельцы патента RU 2446433:

Аллес Михаил Александрович (RU)
Соколов Сергей Викторович (RU)
Ковалев Сергей Михайлович (RU)

Изобретение относится к вычислительной технике и может быть использовано в оптических устройствах обработки информации, построенных на основе нечеткой логики. Технический результат выражается в расширении возможностей устройства - создание устройства, выполняющего в режиме реального времени этапы нечеткого-логического вывода по алгоритму Такаги-Сугено при одновременном увеличении вычислительной производительности. Технический результат достигается за счет того, что в оптоэлектронный нечеткий процессор, содержащий селектор минимального сигнала, введены m×n оптоэлектронных блоков фаззификации, m-1 селекторов минимального сигнала, m оптоэлектронных блоков активизации, оптоэлектронный блок дефаззификации. 4 ил.

 

Изобретение относится к вычислительной технике и может быть использовано в оптических устройствах обработки информации, построенных на основе нечеткой логики.

Известно оптическое нечеткое устройство - оптоэлектронный дефаззификатор [Положительное решение о выдаче патента по заявке №2009124196 от 24.06.2010. Оптоэлектронный дефаззификатор. / Курейчик В.М. и др.], выполняющий операцию дефаззификации и содержащий источник когерентного излучения, оптический транспарант, оптические Y-разветвители, оптический трехвыходной разветвитель, три оптических n-выходных разветвителя, второй оптический транспарант, две группы n пар оптически связанных волноводов, две группы n фотоприемников, две группы n пьезоэлементов, оптический дифференциатор, группа оптических Y-объединителей, селектор минимального сигнала.

Существенные признаки аналога, общие с заявляемым устройством, следующие: источник когерентного излучения, оптический транспарант, оптические Y-разветвители, селектор минимального сигнала, оптический разветвитель, фотоприемник.

Недостатками вышеописанного аналога являются высокая сложность и невозможность выполнения в режиме реального времени этапов нечеткого-логического вывода.

Известно оптическое нечеткое устройство - оптоэлектронный дефаззификатор [Положительное решение о выдаче патента по заявке №2009112100 от 27.05.2010. Оптоэлектронный дефаззификатор. / Курейчик В.М. и др.]. Оптоэлектронный дефаззификатор выполняет операцию дефаззификации и содержит две последовательно расположенные системы преобразования Фурье и пространственный операционный фильтр, образующие оптический неопределенный интегратор, источник когерентного излучения, первый линейный оптический транспарант, группу оптических Y-разветвителей, оптический определенный интегратор, второй линейный оптический транспарант, оптический фазовый модулятор, оптический n-выходной разветвитель, группу оптических Y-объединителей, группу фотоприемников, группу нуль-индикаторов, шифратор.

Существенные признаки аналога, общие с заявляемым устройством, следующие: источник когерентного излучения, линейный оптический транспарант, оптические Y-разветвители, оптический разветвитель, фотоприемник.

Недостатками вышеописанного аналога являются высокая сложность и невозможность выполнения в режиме реального времени этапов нечеткого-логического вывода.

Известно оптическое вычислительное устройство - селектор минимального сигнала [А.с. №1223259, СССР, 1986. Селектор минимального сигнала. / Соколов С.В. и др.], принятый за прототип и предназначенный для вычисления минимального сигнала из совокупности оптических сигналов, поданных на его вход. Селектор минимального сигнала содержит дифференциальные оптроны, входные оптические волноводы.

Прототип является существенным признаком предлагаемого изобретения.

Недостатком вышеописанного прототипа являет невозможность выполнения в режиме реального времени этапов нечеткого-логического вывода.

Задачей изобретения является создание оптического устройства, предназначенного для выполнения в режиме реального времени этапов нечеткого-логического вывода по алгоритму Такаги-Сугено при одновременном упрощении конструкции и увеличении вычислительной производительности до 105-106 операций в секунду.

Технический результат выражается в расширении возможностей устройства - создание устройства, выполняющего в режиме реального времени этапы нечеткого-логического вывода по алгоритму Такаги-Сугено при одновременном увеличении вычислительной производительности.

Сущность изобретения состоит в том, что в оптоэлектронный нечеткий процессор, содержащий селектор минимального сигнала, введены m×n оптоэлектронных блоков фаззификации, m-1 селекторов минимального сигнала, m оптоэлектронных блоков активизации, оптоэлектронный блок дефаззификации, j-м входом оптоэлектронного нечеткого процессора являются объединенные входы ij-ых оптоэлектронных блоков фаззификации и j-й вход i-го оптоэлектронного блока активизации (i=1, 2, …, m; j=1, 2, …, n), каждый оптоэлектронный блок фаззификации содержит источник излучения, электрооптический дефлектор, группу r равноудаленных от выхода электрооптического дефлектора оптических волноводов, линейный оптический транспарант, оптический r-входной объединитель, входом ij-го оптоэлектронного блока фаззификации является управляющий вход электрооптического дефлектора (i=1, 2, …, m; j=1, 2, …, n), к информационному входу которого подключен выход источника излучения, выход электрооптического дефлектора оптически подключен ко входам равноудаленных оптических волноводов, выход каждого a-го равноудаленного оптического волновода подключен через линейный оптический транспарант к a-му входу оптического r-входного объединителя, выход которого является выходом ij-го оптоэлектронного блока фаззификации (а=1, 2, …, r, i=1, 2, …, m; j=1, 2, …, n), выход ij-го оптоэлектронного блока фаззификации подключен к j-му входу i-го селектора минимального сигнала (i=1, 2, …, m; j=1, 2, …, n), выход которого подключен к i-му входу первой группы входов оптоэлектронного блока дефаззификации (i=1, 2, …, m), i-й оптоэлектронный блок активизации содержит источник излучения, оптический (n+1)-выходной разветвитель, n+1 оптических транспарантов (i=1, 2, …, m), n оптических амплитудных модуляторов, n блоков извлечения квадратного корня, оптический (n+1)-входной объединитель, j-м входом оптоэлектронного блока активизации является вход j-го блока извлечения квадратного корня (j=1, 2, …, n), выход источника излучения подключен ко входу оптического (n+1)-выходного разветвителя, каждый j-й выход которого оптически связан со входом j-го оптического транспаранта (j=0, 1, 2, …, n), выход j-го оптического транспаранта подключен к информационному входу j-го оптического амплитудного модулятора (j=1, 2, …, n), выход нулевого оптического транспаранта подключен к нулевому входу оптического (n+1)-входного объединителя, выход j-го блока извлечения квадратного корня подключен к управляющему входу j-го оптического амплитудного модулятора (j=1, 2, …, n), выход j-го оптического амплитудного модулятора оптически связан с j-м входом оптического (n+1)-входного объединителя (j=1, 2, …, n), выход которого является выходом i-го оптоэлектронного блока активизации (i=1, 2, …, m), выход i-го оптоэлектронного блока активизации подключен к i-му входу второй группы входов оптоэлектронного блока дефаззификации (i=1, 2,…, m), оптоэлектронный блок дефаззификации содержит источник когерентного излучения, оптический m-выходной разветвитель, m оптических амплитудных модуляторов, m оптических Y-разветвителей, m оптически управляемых транспаранта, два оптических m-входных объединителя, фотоэлемент, фоторезистор, управляющие входы m оптических амплитудных модуляторов являются первой группой входов оптоэлектронного блока дефаззификации, а управляющие входы m оптически управляемых транспарантов являются второй группой входов оптоэлектронного блока дефаззификации, выход источника излучения подключен ко входу оптического m-выходного разветвителя, каждый выход оптического m-выходного разветвителя подключен к информационному входу соответствующего оптического амплитудного модулятора, выход i-го оптического амплитудного модулятора подключен ко входу i-го оптического Y-разветвителя (i=1, 2, …, m), первый выход которого подключен к информационному входу i-го оптически управляемого транспаранта (i=1, 2, …, m), выход i-го оптически управляемого транспаранта подключен к i-му входу первого оптического m-входного объединителя (i=1, 2, …, m), второй выход i-го оптического Y-разветвителя подключен к i-му входу второго оптического m-входного объединителя (i=1, 2, …, m), выход первого оптического m-входного объединителя подключен ко входу фотоэлемента, выход второго оптического m-входного объединителя подключен ко входу фоторезистора, фотоэлемент и фоторезистор соединены последовательно, выводы фоторезистора являются выходом оптоэлектронного блока дефаззификации, выход оптоэлектронного блока дефаззификации является выходом устройства.

Оптоэлектронный нечеткий процессор - устройство, предназначенное для выполнения в режиме реального времени этапов нечеткого-логического вывода по алгоритму Такаги-Сугено [Борисов В.В. Нечеткие модели и сети. / В.В.Борисов, В.В.Круглов, А.С.Федулов. - M.: Горячая линия - Телеком, 2007. - 248 с.].

Функционирование оптоэлектронного нечеткого процессора представляет собой процесс функционирования нечеткой продукционной системы (НПС). При выполнении алгоритма нечеткого-логического вывода Такаги-Сугено база продукционных правил в общем случае представлена MISO-структурой (multi-in, single-out), причем для построения и реализации оптоэлектронного нечеткого процессора должна быть дана полная, строго определенная и непротиворечивая база правил (смотри приложение 1) в соответствии с решением какой-либо конкретной прикладной задачи.

Алгоритм нечетко-логического вывода Такаги-Сугено включает в себя следующие основные этапы [Борисов В.В. Нечеткие модели и сети. / В.В.Борисов, В.В.Круглов, А.С.Федулов. - M.: Горячая линия - Телеком, 2007. - 248 с.]:

1. Фаззификация - этап «введения нечеткости», процесс получения значения функции принадлежности нечеткого множества Аij, соответствующего значению j-й входной переменной хj в предпосылке i-го нечеткого продукционного правила НПС (i=1, 2, …, m; j=1, 2, …, n); степень истинности нечеткого высказывания «xj есть Aij» определяется значением функции принадлежности по аргументу xj;

2. Агрегирование - процесс определения степени истинности условия (антецедента) αi в каждом i-м правиле НПС (i=1, 2, …, m). В алгоритме нечеткого вывода Цукамото степень истинности антецедента αi в i-м правиле определяется при помощи операции min-конъюнкции по всем нечетким высказываниям «xj есть Aij»: ; ;..; ;..; , (i=1, 2 …, m; j=1, 2, …, n);

3. Активизация - процесс определения четких значений выходной переменной у в заключении (консеквенте) каждого i-го правила НПС. В алгоритме Такаги-Сугено определение четкого значения выходной переменной у в i-м правиле осуществляется в соответствии с выражением yi=ci1·x1i2·x2+…+сin·xni0, где ci1, ci2, …сin, сi0 - константы (i=1, 2, …, m);

4. Дефаззификация - этап определения результирующего значения выходной у переменной НПС. В заявляемом устройстве при реализации алгоритма нечеткого вывода Такаги-Сугено используется дефаззификация по методу центра тяжести:

Функциональная схема оптоэлектронного нечеткого процессора (ОЭНП) показана на фигуре 1.

Оптоэлектронный нечеткий процессор содержит:

- 111, 121, …, 11n; 112, 122, …, 12n; …, 1m1, 1m2, …, 1mn - m групп по n оптоэлектронных блоков фаззификации (ОЭБФ);

- 21, 22, …, 2m - m селекторов минимального сигналов (CMC), которые могут быть выполнены в виде CMC, описанного А.с. №1223259, СССР, 1986. Селектор минимального сигнала. / Соколов С.В. и др.;

- 31, 32, …, 3m - m оптоэлектронных блоков активизации (ОЭБАк);

- 4 - оптоэлектронный блок дефаззификации (ОЭБДФ).

Оптоэлектронный нечеткий процессор имеет n входов, то есть число входов равно количеству входных переменных НПС. Каждый j-й вход устройства подключен ко входу каждого ij-го ОЭБФ 1ij и к j-му входу i-го ОЭБАк 3i (i=1, 2, …, m; j=1, 2, …, n).

Выход ij-го ОЭБФ 1ij подключен к J-му входу i-го CMC 2i (i=1, 2, …, m; j=1, 2, …, n).

Выход i-го CMC 2i подключен к i-му входу первой группы входов ОЭБДФ 4 (i=1, 2, …, m).

Выход каждого i-го ОЭБАк 3i подключен к i-му входу второй группы входов ОЭБДФ 4, выход которого является выходом устройства (i=1, 2, …, m).

Функциональная схема ij-го ОЭБФ 1ij показана на фигуре 2.

Оптоэлектронный блок фаззификации содержит:

- 5 - источник излучения (ИИ) с интенсивностью 1 усл(овных) ед(иниц);

- 6 - электрооптический дефлектор (ЭОД);

- 71, 72, …, 7r - группу r равноудаленных от выхода ЭОД 6 оптических волноводов;

- 8 - линейный оптический транспарант (ЛОТ) с функцией пропускания, равной ;

- 9 - оптический r-входной объединитель.

Входом ij-го ОЭБФ 1ij является управляющий вход ЭОД 6, к информационному входу которого подключен выход ИИ 5. Выход ЭОД 6 оптически подключен ко входам равноудаленных оптических волноводов 71, 72, …, 7r. Выход каждого a-го равноудаленного оптического волновода 7а подключен через ЛОТ 8 к a-му входу оптического r-входного объединителя 9, выход которого является выходом ij-го ОЭБФ 1ij (а=1, 2, …, r).

Функциональная схема i-го ОЭБАк 3i показана на фигуре 3.

ОЭБАк 3i содержит:

- 10 - ИИ с интенсивностью (n+1) усл. ед.;

- 11 - оптический (n+1)-выходной разветвитель;

- 120, 121, 12, …, 12n - n+1 оптических транспарантов (ОТ); функция пропускания j-го ОТ 12j пропорциональна значению (i=1, 2, …, m; j=0, 1, 2, …, n);

- 131, 132, …, 13n - n блоков извлечения квадратного корня (БИК), каждый из которых может быть выполнен, например, в виде блока, описанного в Бобровников, Л.З. Электроника. Учебник для вузов. 5-е изд. / Л.З.Бобровников. - СПб.: Изд-во «Питер», 2004. - 560 с. - стр.247, рисунок 3.44, д;

- 141, 142, …, 14n - n оптических амплитудных модуляторов (ОАМ);

- 15 - оптический (n+1)-входной объединитель.

ОЭБАк 3i имеет n входов; j-м входом ОЭБАк 3i является вход j-го БИК 13j (j=1, 2, …, n). Выход ИИ 10 подключен ко входу оптического (n+1)-выходного разветвителя 11, каждый j-й выход l1j которого оптически связан со входом j-го ОТ 12j (j=0, 1, 2, …, n). Выход j-го ОТ 12j подключен к информационному входу j-го ОАМ 14j (j=1, 2, …, n). Выход j-го БИК 13j подключен к управляющему входу j-го ОАМ 14j (j=1, 2, …, n). Выход нулевого ОТ 120 подключен к нулевому входу оптического (n+1)-входного объединителя 15. Выход j-го ОАМ 14j оптически связан с j-м входом оптического (n+1)-входного объединителя 15 (j=1, 2, …, n), выход которого является выходом i-го ОЭБАк 3i (i=1, 2, …, m).

Функциональная схема ОЭБДФ 4 показана на фигуре 4. Оптоэлектронный блок дефаззификации содержит:

- 16 - источник когерентного излучения (ИКИ) с амплитудой 2×m усл. ед.;

- 17 - оптический m-выходной разветвитель;

-181, 182, …, 18m - m OAM;

- 191, 192, …, 19m - m оптических Y-разветвителей;

- 201, 202, …, 20m - m оптически управляемых транспаранта (ОУТ), которые могут быть выполнены в виде оптически управляемых транспарантов, описанных в Акаев, А.А. Оптические методы обработки информации. / А.А.Акаев, С.А.Майоров. - M.: Высшая школа, 1988. - 236 с., страница 79…83, рисунки 3.10, 3.11;

- 21 - первый оптический m-входной объединитель;

- 22 - второй оптический m-входной объединитель;

- VU 23 - фотоэлемент, работающий в режиме генератора тока;

- VR 24 - фоторезистор.

Первой группой входов ОЭБДФ являются управляющие входы ОАМ 181, 182, …, 18m. Второй группой входов являются управляющие входы ОУТ 201, 202, …, 20m. Выход ИКИ 16 подключен ко входу оптического m-выходного разветвителя 17. Каждый i-ый выход оптического m-выходного разветвителя 17 подключен к информационному входу соответствующего ОАМ 18i (i=1, 2, …, m). Выход i-го ОАМ 181 подключен ко входу i-го оптического Y-разветвителя ОАМ 19i, первый выход которого подключен к информационному входу i-го ОУТ 20i (i=1, 2, …, m). Выход i-го ОУТ 20i подключен к i-му входу первого оптического m-входного объединителя 21 (i=1, 2, …, m). Второй выход i-го оптического Y-разветвителя 19i подключен к i-му входу второго оптического m-входного объединителя 22 (i=1, 2, …, m). Выход первого оптического m-входного объединителя 21 подключен ко входу фотоэлемента VU 23. Выход второго оптического m-входного объединителя 22 подключен ко входу фоторезистора VR 24. Фотоэлемент VU 23 и фоторезистор VR 24 соединены последовательно, выводы фоторезистора VR 24 являются выходом ОЭБДФ.

Работа оптоэлектронного нечеткого процессора происходит в соответствии с вышеуказанными этапами нечетко-логического вывода Такаги-Сугено и протекает следующим образом.

Первым этапом работы оптоэлектронного нечеткого процессора является этап фаззификации. При этом на вход устройства подаются значения входных переменных НПС x1, x2, …, xn в виде электрических сигналов напряжения (тока). Каждый такой j-й сигнал, пропорциональный значению j-й входной переменной xj, поступает на вход ij-го ОБФ 1ij (i=1, 2, …, m; j=1, 2, …, n).

Работа ij-го ОЭБФ 1ij протекает следующим образом. На информационный вход ЭОД 6 с выхода ИИ 5 постоянно поступает точечный оптический поток с интенсивностью 1 усл. ед. При отсутствии сигнала на управляющем входе ЭОД 6 (то есть на входе ОЭБФ) оптический точечный поток с интенсивностью 1 усл. ед., пройдя с информационного входа на выход ЭОД 6, не попадает ни на один из входов равноудаленных оптических волноводов 71, 72, …, 7r и поглощается. При поступлении на управляющий вход ЭОД 6 электрического сигнала, пропорционального значению j-й входной переменной xj, этот электрический сигнал отклоняет точечный оптический поток с интенсивностью 1 усл. ед. на угол φ~arcsin(k·xj), где k - коэффициент, определяемый типом дефлектора. Смещение Δх точечного оптического потока относительно оси ОХ при этом равно:

Δx=L·sin(φ)=а·k·хj,

где L - расстояние от выхода ЭОД 6 до входа любого оптического волновода из группы равноудаленных оптических волноводов 71, 72, …, 7r.

Так как входы оптических волноводов 71, 72, …, 7r равноудалены от выхода ЭОД 6, то L=const и, следовательно:

Δx=L·k·xj=К·xj.

Следовательно, точечный оптический поток с интенсивностью 1 усл. ед. попадет на вход a-го равноудаленного оптического волновода 7а (а=1, 2, …r), если на входе ЭОД 6 присутствует электрический сигнал, пропорциональный значению j-и входной переменной xj.

Далее оптический точечный поток с интенсивностью 1 усл. ед. с выхода a-го равноудаленного оптического волновода 7а (а=1, 2, …r) поступает на a-й вход ЛОТ 8, с a-го выхода которого снимается точечный оптический поток с интенсивностью, пропорциональной значению функции принадлежности нечеткого множества Аij соответствующей j-и входной переменной хj. Этот оптический поток поступает на a-й вход оптического r-входного объединителя 9, с выхода которого снимается оптический поток с интенсивностью, пропорциональной значению функции принадлежности нечеткого множества Аij соответствующей j-и входной переменной хj. На этом первый этап работы оптоэлектронного нечеткого процессора завершается.

На втором этапе функционирования устройства выполняется этап агрегирования, результатом которого будет определение степени истинности антецедента αi в каждом i-м правиле НПС (i=1, 2, …, m). В алгоритме нечеткого вывода Такаги-Сугено степень истинности антецедента αi в i-м правиле определяется при помощи операции min-конъюнкции по всем нечетким высказываниям « есть Аij»:

; ;..; ;..; , (i=1, 2, …, m; j=1, 2, …, n). Вычисление значения αi в i-м правиле осуществляет i-й CMC 2i, работа которого описана в А.с. №1223259, СССР, 1986. Селектор минимального сигнала. / Соколов С.В. и др. На каждый j-й вход i-го CMC 2i с выхода ij-го ОБФ 1ij подается сигнал в виде напряжения со значением, пропорциональным . На выходе i-го CMC 2i формируется сигнал в виде напряжения (тока), пропорционального значению αi. На этом завершается второй этап работы оптоэлектронного нечеткого процессора.

Третий этап работы оптоэлектронного нечеткого процессора - этап активизации правил НПС - протекает одновременно со вторым этапом работы оптоэлектронного нечеткого процессора. Процесс определения четких значений выходной переменной у в заключении каждого i-го правила НПС в алгоритме Такаги-Сугено осуществляется в соответствии с выражением yi=ci1·x1+ci2·x2+…+cin·xn+ci0, (i=1, 2, …, m). Для выходной переменной у в консеквенте каждого i-го правила НПС определение четкого значения уi осуществляется i-ым ОЭБАк 3i (i=1, 2, …, m). Работа i-ого ОЭБАк 3i происходит следующим образом. С выхода ИИ 10 оптический поток с интенсивностью (n+1) усл. ед. поступает на вход оптического (n+1)-выходного разветвителя 11, на каждом выходе которого формируется оптический поток единичной интенсивности. Каждый такой оптический поток с j-го выхода 11j оптического (n+1)-выходного разветвителя 11 поступает на вход i-го ОТ 12j, на выходе которого формируется оптический поток с интенсивностью, пропорциональной значению константы cij (i=1, 2, …, m; j=0, 1, 2, …, n). Далее этот оптический поток с интенсивностью, пропорциональной cij, поступает на информационный вход i-го ОАМ 14j (j=1, 2, …, n). Одновременно на вход i-го БИК 13j поступает электрический сигнал, пропорциональный значению входной переменной xj (j=1, 2, …, n). Работа БИК описана в Бобровников, Л.З. Электроника. Учебник для вузов. 5-е изд. / Л.З.Бобровников. - СПб.: Изд-во «Питер», 2004. - 560 с. - стр.247, рисунок 3.44, д. На выходе j-го БИК 13j формируется электрический сигнал величиной, пропорциональный значению (j=1, 2, …, n). Этот сигнал поступает на управляющий вход j-го ОАМ 14j (j=1, 2, …, n). Таким образом, на выходе j-го ОАМ 14j формируется оптический поток с интенсивностью, пропорциональной величине cij×xj, (i=1, 2, …, m; j=1, 2, … n). Каждый такой j-й поток поступает на j-й вход 15j оптического (n+1)-входного объединителя 15 (j=1, 2, …, n). При этом одновременно с выхода нулевого ОТ 120 оптический поток с интенсивностью, пропорциональной величине сi0, поступает на нулевой вход 150 оптического (n+1)-входного объединителя 15 (i=1, 2, …, m). Поэтому на выходе оптического (n+1)-входного объединителя 15 и, следовательно, на выходе i-го ОЭБАк 3i формируется оптический поток с интенсивносью, пропорциональной величине yii1·x1i2·x2+…+сin·xni0 (i=1, 2, …, m). Третий этап работы оптоэлектронного процессора завершается.

На четвертом этапе функционирования устройства выполняется определение результирующего значения выходной переменной у в соответствии с выражением (1). Этот этап осуществляет ОЭБДФ 4, который функционирует следующим образом.

С выхода ИКИ 16 оптический когерентный поток с амплитудой 2×m усл. ед. поступает на вход оптического m-выходного разветвителя 17, на каждом i-м выходе которого формируется оптический поток с амплитудой 2 усл. ед. (i=1, 2, …, m). Этот оптический поток поступает на информационный вход i-го OAM 18i, на управляющий вход которого с выхода i-го CMC 2i поступает сигнал в виде электрического напряжения (тока) величиной, пропорциональной αi (i=1, 2, …, m). Следовательно, на выходе i-го OAM 18i формируется оптический поток с амплитудой, пропорциональной 2×αi (i=1, 2, …, m). Далее этот оптический поток поступает на вход i-го оптического Y-разветвителя 19i и делится на две части (i=1, 2, …, m). Первая часть этого потока с амплитудой, пропорциональной αi, с первого выхода оптического Y-разветвителя 19i попадает на информационный вход i-го ОУТ 20i, а вторая часть потока с амплитудой, пропорциональной аi, со второго выхода оптического Y-разветвителя 19i - на i-й вход второго m-входного объединителя 22 (i=1, 2, …, m). Так как на управляющий вход i-го ОУТ 19i с выхода i-го ОЭБАк 3i подается оптический поток с интенсивностью, пропорциональной значению yii1·х1i2·х2+…+сin·хni0, то на выходе i-го ОУТ 20i формируется оптический поток с амплитудой, пропорциональной αi×yi, (i=1, 2, …, m). Этот оптический поток поступает на i-й вход первого m-входного объединителя 21.

Таким образом, на выходе первого оптического m-входного объединителя 21 формируется оптический поток с амплитудой, пропорциональной α1·y12·y2+…+αm·ym (с интенсивностью, пропорциональной (α1·y12·y2+…+αm·ym)2), который поступает на вход фотоэлемента VU 23. Одновременно на выходе второго оптического m-входного объединителя 22 формируется оптический поток с амплитудой, пропорциональной α12+…+αm (с интенсивностью, пропорциональной (α12+…+am)2), который поступает на вход фоторезистора VR 24.

Так как зависимость фототока фотоэлемента VU 23 от интенсивности поступающего на его вход оптического потока с требуемой точностью аппроксимируется функцией вида [Бодиловский, В.Г. Полупроводниковые и электровакуумные приборы в устройствах автоматики, телемеханики и связи: Учебник для техникумов ж.-д. трансп.- 5-е изд., перераб. и доп. / В.Г.Бодиловский. - М: Транспорт, 1986. - 440 с.], то на выходе фотоэлемента VU 23 формируется фототок Iф, пропорциональный значению α1·y12·y2+…+αm·ym.

Так как зависимость сопротивления фоторезистора от интенсивности падающего на него светового потока с требуемой точностью аппроксимируется функцией вида [Либерман, Ф.Я. Электроника на железнодорожном транспорте: Учеб. пособие для вузов ж.-д. трансп. / Ф.Я.Либерман. - М: Транспорт, 1987. - 288 с.], то сопротивление фоторезистора VR 24 будет обратно пропорционально значению α12+…+αm.

Следовательно, падение напряжения на фоторезисторе VR 24 определяется как:

где RVR 24 - сопротивление фоторезистора VR 24,

то напряжение на фоторезисторе VR 24, являющееся выходным сигналом ОЭДФ 4, оказывается пропорциональным значению:

то есть пропорциональным искомому значению у в соответствии с выражением (1).

Таким образом ОЭНП осуществляет процесс функционирования нечеткой продукционной системы (НПС) при выполнении алгоритма нечетко-логического вывода Такаги-Сугено с MISO-структурой.

Быстродействие оптоэлектронного нечеткого процессора определяется динамическими характеристиками составляющих его блоков и узлов, в частности:

- электрооптического дефлектора, входящего в состав оптоэлектронного блока фаззификации,

- селекторов минимального сигнала;

- оптических амплитудных модуляторов, входящих в состав оптоэлектронных блоков активизации и оптоэлектронного блока дефаззификации;

- блоков извлечения квадратного корня, входящих в состав оптоэлектронных блоков активизации;

- управляемых оптических транспарантов, входящих в состав оптоэлектронного блока дефаззификации;

- фотоэлемента, фоторезистора, входящих в состав оптоэлектронного блока дефаззификации.

Быстродействие электрооптических дефлекторов может достигать 10-12 с. Селектор минимального сигнала, выполненный, например, на лавинных фотодиодах, имеет время срабатывания до 80…100 пс. Управляемые источники оптического излучения, выполненные на основе полупроводниковых источников света, обладают быстродействием порядка 10-9 с. Блок извлечения квадратного корня, выполняемый в традиционном варианте на основе операционных усилителей с обратной связью, имеет частоту среза до 1 МГц. Оптически управляемые транспаранты и оптические амплитудные модуляторы, изготовленные на основе PLZT-керамики или на основе жидких кристаллов, имеют быстродействием порядка 10-6 с. Фотоэлемент и фоторезистор имеют частоту среза до 1 ГГц.

Для существующих непрерывно-логических систем обработки информации подобное быстродействие обеспечивает их функционирование практически в реальном масштабе времени.

Оптоэлектронный нечеткий процессор, содержащий селектор минимального сигнала, отличающийся тем, что в него введены m·n оптоэлектронных блоков фаззификации, m-1 селекторов минимального сигнала, m оптоэлектронных блоков активизации, оптоэлектронный блок дефаззификации, j-м входом оптоэлектронного нечеткого процессора являются объединенные входы ij-х оптоэлектронных блоков фаззификации и j-й вход i-го оптоэлектронного блока активизации (i=1, 2, …, m; j=1, 2, …, n), каждый оптоэлектронный блок фаззификации содержит источник излучения, электрооптический дефлектор, группу r равноудаленных от выхода электрооптического дефлектора оптических волноводов, линейный оптический транспарант, оптический r-входной объединитель, входом ij-го оптоэлектронного блока фаззификации является управляющий вход электрооптического дефлектора (i=1, 2, …, m; j=1, 2, …, n), к информационному входу которого подключен выход источника излучения, выход электрооптического дефлектора оптически подключен ко входам равноудаленных оптических волноводов, выход каждого а-го равноудаленного оптического волновода подключен через линейный оптический транспарант к а-му входу оптического r-входного объединителя, выход которого является выходом ij-го оптоэлектронного блока фаззификации (а=1, 2, …, r, i=1, 2, …, m; j=1, 2, …, n), выход ij-го оптоэлектронного блока фаззификации подключен к j-му входу i-го селектора минимального сигнала (i=1, 2, …, m; j=1, 2, …, n), выход которого подключен к i-му входу первой группы входов оптоэлектронного блока дефаззификации (i=1, 2, …, m), i-й оптоэлектронный блок активизации содержит источник излучения, оптический (n+1)-выходной разветитель, n+1 оптических транспарантов (i=1, 2, …, m), n оптических амплитудных модуляторов, n блоков извлечения квадратного корня, оптический (n+1)-входной объединитель, j-м входом оптоэлектронного блока активизации является вход i-го блока извлечения квадратного корня (j=1, 2, …, n), выход источника излучения подключен ко входу оптического (n+1)-выходного разветвителя, каждый j-й выход которого оптически связан со входом j-го оптического транспаранта (j=0, 1, 2, …, n), выход j-го оптического транспаранта подключен к информационному входу j-го оптического амплитудного модулятора (j=1, 2, …, n), выход нулевого оптического транспаранта подключен к нулевому входу оптического (n+1)-входного объединителя, выход j-го блока извлечения квадратного корня подключен к управляющему входу j-го оптического амплитудного модулятора (j=1, 2, …, n), выход j-го оптического амплитудного модулятора оптически связан с j-м входом оптического (n+1)-входного объединителя (j=1, 2, …, n), выход которого является выходом i-го оптоэлектронного блока активизации (i=1, 2, …, m), выход i-го оптоэлектронного блока активизации подключен к i-му входу второй группы входов оптоэлектронного блока дефаззификации (i=1, 2, …, m), оптоэлектронный блок дефаззификации содержит источник когерентного излучения, оптический m-выходной разветвитель, m оптических амплитудных модуляторов, m оптических Y-разветвителей, m оптически управляемых транспаранта, два оптических m-входных объединителя, фотоэлемент, фоторезистор, управляющие входы m оптических амплитудных модуляторов являются первой группой входов оптоэлектронного блока дефаззификации, а управляющие входы m оптически управляемых транспарантов являются второй группой входов оптоэлектронного блока дефаззификации, выход источника излучения подключен ко входу оптического m-выходного разветвителя, каждый выход оптического m-выходного разветвителя подключен к информационному входу соответствующего оптического амплитудного модулятора, выход i-го оптического амплитудного модулятора подключен ко входу i-го оптического Y-разветвителя (i=1, 2, …, m), первый выход которого подключен к информационному входу i-го оптически управляемого транспаранта (i=1, 2, …, m), выход i-го оптически управляемого транспаранта подключен к i-му входу первого оптического m-входного объединителя (i=1, 2, …, m), второй выход i-го оптического Y-разветвителя подключен к i-му входу второго оптического m-входного объединителя (i=1, 2, …, m), выход первого оптического m-входного объединителя подключен ко входу фотоэлемента, выход второго оптического m-входного объединителя подключен ко входу фоторезистора, фотоэлемент и фоторезистор соединены последовательно, выводы фоторезистора являются выходом оптоэлектронного блока дефаззификации, выход оптоэлектронного блока дефаззификации является выходом устройства.



 

Похожие патенты:

Изобретение относится к вычислительной технике и может быть использовано в оптических устройствах обработки информации, построенных на основе непрерывной (нечеткой) логики.

Изобретение относится к вычислительной технике и может быть использовано в оптических устройствах обработки информации, построенных на основе непрерывной (нечеткой) логики.

Изобретение относится к вычислительной технике и может быть использовано в оптических устройствах обработки информации для решения оптимизационных задач математического программирования.

Изобретение относится к вычислительной технике. .

Изобретение относится к вычислительной технике и может быть использовано в оптических устройствах обработки информации, построенных на основе непрерывной (нечеткой) логики.

Изобретение относится к вычислительной технике и может быть использовано в оптических устройствах обработки информации, построенных на основе непрерывной (нечеткой) логики.

Изобретение относится к вычислительной технике и может быть использовано в оптических устройствах обработки информации, построенных на основе нечеткой логики. .

Изобретение относится к вычислительной технике и может быть использовано в оптических устройствах обработки информации, построенных на основе нечеткой логики. .

Изобретение относится к вычислительной технике и может быть использовано в оптических устройствах обработки информации, построенных на основе непрерывной (нечеткой) логики

Изобретение относится к вычислительной технике и может быть использовано в оптических устройствах обработки информации, построенных на основе непрерывной (нечеткой) логики

Изобретение относится к вычислительной технике и может быть использовано в оптических устройствах обработки информации, построенных на основе нечеткой логики

Изобретение относится к вычислительной технике и может быть использовано в оптических наноустройствах обработки информации для выбора (селекции) максимального сигнала из совокупности оптических сигналов, подаваемых на его вход

Изобретение относится к вычислительной технике и может быть использовано в оптических устройствах обработки информации, построенных на основе непрерывной (нечеткой) логики

Изобретение относится к средствам вычислительной техники и может быть использовано в оптических устройствах обработки информации при разработке и создании оптических вычислительных машин и приемопередающих устройств

Изобретение относится к вычислительной технике и может быть использовано в оптических наноустройствах обработки информации для выбора (селекции) минимального сигнала из совокупности оптических сигналов, подаваемых на его вход

Изобретение относится к вычислительной технике и может быть использовано в оптических наноустройствах обработки информации для выбора (селекции) минимального сигнала из совокупности оптических сигналов, подаваемых на его вход

Изобретение относится к вычислительной технике и может быть использовано в оптических наноустройствах обработки информации для селекции оптических сигналов

Изобретение относится к вычислительной технике и может быть использовано в оптических устройствах обработки информации, построенных на основе нечеткой логики
Наверх