Способ временной привязки импульсного светолокационного сигнала



Способ временной привязки импульсного светолокационного сигнала
Способ временной привязки импульсного светолокационного сигнала
Способ временной привязки импульсного светолокационного сигнала

 


Владельцы патента RU 2451950:

Федеральное государственное унитарное предприятие "Научно-исследовательский институт "Полюс" им. М.Ф. Стельмаха" (RU)

Изобретение относится к лазерной технике, а именно к лазерной дальнометрии. Технический результат изобретения заключается в повышении точности определения дальности до цели. Способ временной привязки импульсного светолокационного сигнала к сигналу тактовой частоты, синхронизированному с зондирующим импульсом, заключается в формировании массива выборочных значений сигнала и последующей временной привязке путем сравнения с цифровым шаблоном, соответствующим форме зондирующего импульса. Цифровой шаблон формируют путем оцифровки зондирующего импульса, в результате чего образуют базовый массив выборочных значений зондирующего импульса; после этого массив интерполируют гладкой функцией, а затем формируют дополнительные массивы. В процессе временной привязки светолокационного сигнала массив его выборочных значений сравнивают с каждым из дополнительных массивов, в результате чего формируют оценки, характеризующие близость базового и дополнительных массивов, например, в виде суммарного абсолютного отклонения, определяют порядковый номер, при котором оценка в наибольшей степени характеризует близость массивов, и формируют поправку временной привязки относительно импульса тактовой частоты, совпадающего с началом сигнала. 3 ил.

 

Изобретение относится к лазерной технике, а именно к лазерной дальнометрии.

Известны локационные способы измерения дальности до удаленных объектов. Известен способ измерения дальности до цели [1], включающий посылку на цель зондирующего лазерного импульса SL(t-t0), где t - текущее время, t0 - момент посылки, регистрацию момента посылки t0, прием отраженного целью излучения S(t-tD), регистрацию момента приема tD и определение временного интервала τ=tD-t0, по которому судят о дальности D до цели по формуле D=cτ/2, где c - скорость света. Согласно этому способу, регистрацию моментов излучения зондирующего импульса и приема отраженного сигнала (временную привязку) производят в момент превышения сигналом заданного порога (привязка по фронту). При таком способе погрешность временной привязки велика - порядка длительности фронта сигнала [2]. Другим недостатком описанного в [1] способа является невысокая точность определения временного интервала τ, поскольку в измерителях первого поколения использовались аналоговые методы измерения временных интервалов.

Наиболее близким по технической сущности к предлагаемому способу является способ временной привязки импульсного светолокационного сигнала S(t-tD) к сигналу тактовой частоты, синхронизированному с зондирующим импульсом SL(t), путем подсчета количества периодов T тактовой частоты от момента излучения зондирующего импульса, заключающийся в формировании массива {Si} выборочных значений сигнала S(t-tD), с периодом выборок T, и последующей временной привязке путем сравнения с цифровым шаблоном {SLi}, соответствующим зондирующему импульсу [3].

В указанном источнике сравнение массивов {SLi} и {Sj} производят путем последовательного сдвига массива {Si} на p=1, 2,…, Imax шагов, соответствующих периоду T тактовой последовательности, и определения на каждом шаге коэффициента корреляции . Значение Р, при котором корреляционная зависимость R(P) принимает максимальное значение, считают соответствующим временному положению принятого сигнала и определяют дальность до цели по формуле D=cPT/2, где c - скорость света. Максимальное количество шагов р=Imax соответствует предельной измеряемой дальности Dmax и определяется выражением Imax=2Dmax/cT.

При таком методе фиксации временного положения принятого сигнала S(t), представленного массивом своих выборочных значений {Si}, точность измерения дальности определяется дискретностью тактового сигнала T.

Задачей изобретения является повышение точности определения дальности. Указанная задача решается за счет того, что в известном способе временной привязки импульсного светолокационного сигнала S(t), где t - текущее время, к сигналу тактовой частоты с периодом T, синхронизированному с зондирующим импульсом SL(t), заключающемся в формировании массива {Si} выборочных значений сигнала S(t), с периодом выборок T, и последующей временной привязке путем сравнения с цифровым шаблоном, соответствующим форме зондирующего импульса, цифровой шаблон формируют путем оцифровки зондирующего импульса SL(t), с периодом T, в результате чего образуют базовый массив {SLi}0 выборочных значений зондирующего импульса STi=SL(i·T), где i=1, …, I - индекс оцифровки; I=tи/T - количество выборок в массиве {SLi}0; tи - длительность импульса; после этого массив {SLi}0 интерполируют гладкой функцией SL*(t), а затем формируют массивы {SLi}w, где w=1, 2, …, W, образуемые по формуле SLiw=SL*(tiw), где tiw=(w-1)T/W+(i-1)T, причем при формировании массива {SLi}0 начало отсчета времени t=0 выбирают так, чтобы на период от этого момента до вершины зондирующего импульса приходилось не менее чем два периода T тактовой частоты, количество W дополнительных массивов выбирают из условия 2≤W≤T/ΔT, где ΔT - неустранимая аппаратурная погрешность временной привязки, а в процессе временной привязки светолокационного сигнала массив его выборочных значений сравнивают с каждым из массивов {SLi}w в результате чего формируют W оценок Rw=R({S1i}w, {S2i}), характеризующих близость массивов {S1i}w и {S2i}, например, в виде суммарного абсолютного отклонения , определяют порядковый номер w*, при котором оценка Rw в наибольшей степени характеризует близость массивов {S1i}w и {S2i}, и формируют поправку Tt временной привязки относительно импульса тактовой частоты, совпадающего с началом сигнала S(t), по формуле Tt=ΔN·T, где ΔN=(w*-1)/W, T - период тактовой частоты.

На Фиг.1 представлена временная диаграмма процесса зондирования, его привязки к тактовой частоте и формирования массивов {SLi} и {Si}. Фиг.2 иллюстрирует принцип формирования массивов {SLi}w=1 и {SLi}w=w. На фиг.3а) и б) приведены результаты представления функции SL*(t) соответственно кубическими сплайнами и по методу наименьших квадратов.

В момент времени t=0 в направлении цели посылают зондирующий импульс SL(t) 1, представленный массивами своих выборочных значений {SLi}w. Один из таких массивов 2 показан на фиг.1. Момент t=0 излучения зондирующего импульса 1 привязан к тактовой последовательности 4 путем присвоения импульсу тактовой последовательности, совпадающему с моментом t=0, порядкового номера i=0. Тактовые импульсы генерируют с помощью высокостабильного источника с частотой FT=1/T, где T - период следования тактовых импульсов.

После излучения зондирующего импульса принимают отраженный целью импульс S(t) 3 и производят его оцифровку с периодом тактовой частоты T. Результаты оцифровки сохраняют в массиве {Si} 5, который затем сравнивают с каждым из массивов {SLi}w, образуемых следующим образом.

Базовый массив {SLi}1 6 формируют путем предварительной оцифровки зондирующего сигнала 1, заключающейся в пробном излучении зондирующего сигнала 1, его преобразовании в электрический сигнал, выделении и регистрации его выборочных значений 6 с периодом T, как это показано на фиг.2а). Вслед за этим производят интерполяцию массива {SLi}0 гладкой функцией SL*(t). Эта функция 7 показана на фиг.2. Построив функцию SL*(t), формируют W массивов ее выборочных значений 2. Каждый из этих массивов образуют по формуле

; .

Формирование шаблона в виде W массивов, формируемых по формуле (1), и осуществление временной привязки массива {Si} путем его поочередного сравнения с каждым из этих массивов {SLi}w дает возможность уменьшить дискретность измерения дальности в W раз, поскольку результаты такого сравнения зависят от порядкового номера массива {SLi}w. Благодаря этому существенно повышается точность измерения без увеличения тактовой частоты FT.

Рассмотренный способ формирования шаблона позволяет произвести оцифровку зондирующего сигнала стандартными техническими средствами без увеличения тактовой частоты и без необходимости многократных пробных зондирований с введением сдвига оцифровки tw=wT/W при каждом таком зондировании. Это позволяет исключить аппаратные ошибки формирования шаблона, связанные с погрешностью задания сдвига tw, неоднозначностью воспроизведения амплитуды и формы сигнала при каждом пробном зондировании, воздействии помех и других факторов, присущих аналого-цифровой обработке. На фиг.3 показаны примеры интерполяции зондирующего сигнала SL(t) 1, представленного массивом своих выборочных значений {SLi}0 6, с помощью кубических сплайнов (кривая 9) и аппроксимации по методу наименьших квадратов (кривая 11) [4]. Ошибки аппроксимации показаны на тех же графиках в масштабе 50:1 - кривая 10 при сплайн-интерполяции и кривые 12, 13 - при аппроксимации полиномами соответственно степени 7 и 9. При любом из указанных методов аппроксимации предлагаемый способ при оцифровке массивов {SLi}w обеспечивает погрешность порядка 0,1% и менее. Такая точность недостижима при непосредственном аналого-цифровом преобразовании зондирующего сигнала.

Данный способ реализован в экспериментальном образце лазерного дальномера со следующими характеристиками. Тактовая частота FT=25 МГц (тактовый период T=40 нс, что соответствует дискретности по дальности ΔD=6 м). Количество массивов W=100. Общее количество выборок в каждом массиве {SLi}w K=5. Среднеквадратичная ошибка измерения дальности не превышает 0,06 м и определяется неустранимой аппаратурной погрешностью временной привязки. У известных дальномеров ошибка измерения в десятки раз больше этой величины.

Предлагаемый способ по сравнению с известными способами обеспечивает значительно более точную оценку положения отраженного сигнала по массиву его выборочных значений в условиях воздействия шумов, в том числе, при многократном зондировании и накоплении данных. В результате обеспечивается существенное повышение точности определения дальности до цели.

Источники информации

1. В.А.Волохатюк, В.М.Кочетков, P.P.Красовский. Вопросы оптической локации. - М.: Советское радио, 1971 г., с.176.

2. Е.А.Мелешко. Интегральные схемы в наносекундной ядерной электронике. - М.: Атомиздат, 1977, с.77.

3. United States Patent No 5805468, September 8, 1998, Method and apparatus for determining the light transit time over a measurement path arranged between a measuring apparatus and a reflecting object. - Прототип.

4. И.Н.Бронштейн, K.A.Семендяев. Справочник по математике для инженеров и учащихся втузов. - М.: Наука, 1986 г.

Способ временной привязки импульсного светолокационного сигнала S(t), где t - текущее время, к сигналу тактовой частоты с периодом Т, синхронизированному с зондирующим импульсом SL(t), заключающийся в формировании массива {Si} выборочных значений сигнала S(t) с периодом выборок Т и последующей временной привязке путем сравнения с цифровым шаблоном, соответствующим форме зондирующего импульса, отличающийся тем, что цифровой шаблон формируют путем оцифровки зондирующего импульса SL(t) с периодом Т, в результате чего образуют базовый массив {SLi}0 выборочных значений зондирующего импульса STi=SL(i·T), где i=1, …, I - индекс оцифровки; I=tи/T - количество выборок в массиве {SLi}0; tи - длительность импульса; после этого массив {SLi}0 интерполируют гладкой функцией SL*(t), а затем формируют массивы {SLi}w, где w=1, 2, …, W, образуемые по формуле SLiw=SL*(tiw), где tiw=(w-1)T/W+(i-1)T, причем при формировании массива {SLi}0 начало отсчета времени t=0 выбирают так, чтобы на период от этого момента до вершины зондирующего импульса приходилось не менее чем два периода Т тактовой частоты, количество W дополнительных массивов выбирают из условия 2≤W≤T/ΔT, где ΔT - неустранимая аппаратурная погрешность временной привязки, а в процессе временной привязки светолокационного сигнала массив его выборочных значений сравнивают с каждым из массивов {SLi}w, в результате чего формируют W оценок Rw=R({S1i}w, {S2i}), характеризующих близость массивов {S1i)w и {S2i}, например, в виде суммарного абсолютного отклонения , определяют порядковый номер w*, при котором оценка Rw в наибольшей степени характеризует близость массивов {S1i}w и {S2i}, и формируют поправку Тt временной привязки относительно импульса тактовой частоты, совпадающего с началом сигнала S(t), по формуле Tt=ΔN·T, где ΔN=(w*-1)/W, Т - период тактовой частоты.



 

Похожие патенты:

Изобретение относится к лазерной технике, а именно к лазерной дальнометрии. .

Изобретение относится к приборостроению и может быть использовано в качестве имитатора импульсных высокочастотных сигналов, образуемых на выходе матричного фотоприемного устройства с размерностью m n - элементов в матрице, принимающего лазерные излучения, переотраженные бликами морской поверхности, хаотически распределенные во времени и по пространству, при решении локационной задачи по низколетящим ракетам морского базирования (m - число столбцов, n - число строк в матрице).

Изобретение относится к областям лазерной техники и электроники и может быть использовано при синтезе лазерных доплеровских локаторов по низколетящим крылатым ракетам морского базирования, использующих переотражения лазерного излучения от бликов морской поверхности, на которую падает рассеянное лазерное излучение, облучающее боковую поверхность крылатой ракеты.

Изобретение относится к лазерной технике. .

Изобретение относится к лазерной доплеровской локации и может быть использовано при синтезе устройств обработки информации о местоположении и скорости низколетящих ракет морского базирования с помощью лазерных доплеровских локаторов с непрерывным режимом излучения и растровым сканированием по угловым координатам.

Изобретение относится к области оптической электроники и может быть использовано в прецизионных системах обеспечения вхождения в связь, системах точного нацеливания узких оптических лучей и др.

Изобретение относится к области медицинской техники, а именно к устройствам для регистрации и оценки отклонения фазового сдвига земного излучения в двух разных пространственных точках.

Изобретение относится к области приборостроения и может быть использовано в лазерной локации низколетящих ракет морского базирования, например, типа «Гарпун», использованных Аргентиной против корабля Великобритании в военном конфликте в 80-х годах прошлого столетия из-за выяснения принадлежности Мальвинских (Фолклендских) островов в акватории южной Америки, а также в результате предполагаемого использования против российских кораблей в Грузино-Абхазском военном противостоянии на Черном море в августе 2008 года.

Изобретение относится к области приборостроения и может быть использовано при разработке лазерных локационных систем морского базирования для обнаружения низколетящих крылатых ракет.

Изобретение относится к области измерительной техники и приборостроения и может быть использовано в качестве лазерного локатора для обнаружения и измерения координат и скорости низколетящих ракет морского базирования в интересах ВМФ страны

Изобретение относится к лазерной технике, а именно к аппаратуре лазерной дальнометрии

Изобретение относится к области измерительной техники и может быть использовано при разработке лазерных доплеровских локаторов применительно к низколетящим ракетам морского базирования типа «Гарпун» и аналогичных

Использование: изобретение относится к области гидроакустики и может быть использовано в гидроакустических станциях надводных кораблей с гибкими протяженными буксируемыми антеннами (ГПБА) для проведения акустического мониторинга окружающей водной среды. Сущность: гидроакустическая станция с гибкой протяженной буксируемой антенной для надводного корабля содержит бортовую часть (БЧ ГАС), соединенную при помощи кабель-буксира с ГПБА, которая состоит из двух секций - пассивной акустической секции (ПАС) и излучающей акустической секции (ИАС). При этом в состав кабель-буксира вводится дополнительный световод, передающий мощное оптическое излучение, в состав бортовой аппаратуры гидроакустической станции вводится оптоэлектронный блок, обеспечивающий эффективный ввод излучения в такой световод, а в состав ГПБА вводится оптоэлектронный блок, осуществляющий обратное преобразование оптической мощности в электрическую энергию для питания всех потребителей ГПБА. Технический результат - уменьшение диаметра кабель-буксира, уменьшения габаритов и массы спускоподъемного устройства на корабле, уменьшение влияния собственных шумов корабля на принимаемый акустический сигнал. 3 ил.

Изобретение может быть использовано в измерительной аппаратуре, системах предупреждения столкновения транспортных средств, навигационных устройствах и системах охранной сигнализации. Устройство содержит блок управления 3, передающую оптическую систему 7, 8 с полем излучения 13, приемную оптическую систему 9 с полем зрения 14, выполненную в виде цилиндрической линзы, в фокальной плоскости которой установлен фотоприемник 6. Зона чувствительности образована пересечением поля излучения 13 и поля зрения 14. Устройство снабжено выпуклым коническим зеркалом 11, размещенным перед передающей и принимающей оптическими системами. Передающая оптическая система составлена из n идентичных пар перпендикулярно скрещенных цилиндрических линз с совпадающими главными оптическими осями и фокальными плоскостями, а также из n импульсных лазерных источников света, установленных в фокальных плоскостях соответствующих пар цилиндрических линз, расположенных равномерно по окружности, в центре которой закреплена приемная оптическая система с главной оптической осью, совпадающей с осью симметрии зеркала и параллельной главным оптическим осям пар цилиндрических линз. Технический результат - увеличение количества источников света, обслуживаемых одним фотоприемником, компактное расположение источников света, придание зоне чувствительности формы конуса. 1 з.п. ф-лы, 3 ил.

Изобретение относится к области оптической локации и касается системы импульсной лазерной локации. Система содержит импульсный лазер, два однокоординатных сканирующих устройства, акустооптический дефлектор, выходную оптическую систему, вычислительное устройство, блок управления акустооптическим дефлектором, призменный светоделитель, измерительный канал, массив фотоприемных устройств, объектив массива фотоприемных устройств и волоконно-оптические жгуты. Волоконно-оптические жгуты с одной стороны смонтированы вместе и обращены торцами к фотоприемным устройствам, а с другой стороны волокна каждого жгута смонтированы в однорядные линейки, которые суммарно образуют однорядную линейку из волокон, торцы которой расположены в фокальной плоскости объектива фотоприемного устройства. Призменный светоделитель размещен между выходом акустооптического дефлектора и входом выходной оптической системы. Оптический вход измерительного канала соединен с выходом призменного светоделителя, а выход соединен с входом компенсации угловых ошибок вычислительного устройства. Технический результат заключается в уменьшении габаритно-весовых характеристик, повышении надежности и информативности лазерного локатора. 3 ил.

Изобретение относится к области лазерной локации и может быть использовано в стационарных наземных лазерных локационных системах наблюдения и контроля окружающего пространства для обнаружения оптических и оптико-электронных приборов. Система лазерной локации содержит высокочувствительные фотоприемные блоки видимого и инфракрасного диапазонов длин волн, лазерные генераторы с перестройкой длины волны генерации, спектральные перестраиваемые фильтры. Технический результат - повышение помехоустойчивости работы системы в условиях воздействия помех от лазерного излучения, увеличение эффективности обнаружения и вероятности распознавания оптических и оптико-электронных приборов в условиях действия организованных оптических помех от лазерных систем прицеливания и лазерного воздействия. 6 з.п. ф-лы, 2 ил.

Изобретение относится к лазерной локации и может быть использовано в локационных наземных стационарных и мобильных комплексах лазерной локации для обнаружения и распознавания оптических и оптоэлектронных приборов. Локационная система осуществляет спектральный анализ наблюдаемых изображений местности в видимом и инфракрасном диапазонах длин волн, а также спектральный фурье-анализ тонкой структуры отраженных от обнаруживаемых объектов лазерных зондирующих импульсов. Система содержит лазерные генераторы с перестройкой длины волны генерации, спектральные перестраиваемые фильтры на основе акустооптических ячеек, фотоприемные блоки видимого и инфракрасного диапазона длин волн на основе видеокамер и матричных фоточувствительных многоэлементных приемников оптических сигналов. Технический результат - повышение эффективности обнаружения и вероятности распознавания оптических и оптоэлектронных приборов и средств наблюдения, повышение точности определения координат обнаруженных объектов и привязки их координат к координатам и характерным элементам наблюдаемой местности. 6 з.п. ф-лы, 3 ил.

Изобретение относится к способу определения высоты летательного аппарата. При реализации способа осуществляется N-кратное зондирование подстилающей поверхности импульсами лазерного излучения и его некогерентное накопление принятого отражённого от объекта сигнала. По результатам статистической обработки полученных данных определяют временное положение отраженного сигнала Th относительно момента излучения зондирующего импульса и вычисляют высоту летательного аппарата по формуле h=c Th/2, где c - скорость света. При этом диапазон высот разбивают на K зон. Объем накопления N в каждой зоне устанавливают в зависимости от периода тактовой частоты импульсов, разделяющих время на интервалы, предельно допустимой ошибки измерения высоты в j-й зоне высот, частоты зондирования и заданного периода обновления информации в j-й зоне высот. Технический результат заключается в обеспечении необходимой точности измерений при заданных обнаружительных характеристиках и при требуемой частоте обновления информации в процессе выполнения различных полетных заданий. 3 з.п. ф-лы, 1 ил., 3 табл.

Изобретение относится к измерительной технике определения высоты и вертикальной скорости летательного аппарата. Устройство обеспечивает возможность работы в двух режимах. Сигнал от источника направляется на объект, и приемник излучения фиксирует отраженный от объекта сигнал. От приемника излучения посредством коммутатора сигнал передается на многоканальный цифровой накопитель. При этом отслеживается достижение накопленным сигналом установленного уровня. Если сигнал не достигает установленного уровня, то работа устройства производится по методу некогерентного многоканального накопления. Если будет отмечено превышение порога, то работа устройства производится в моноимпульсном режиме. Технический результат изобретения заключается в обеспечении измерений с борта летательного аппарата его высоты и вертикальной составляющей скорости как в стационарном полете, так и при взлете и посадке в широком диапазоне высот и режимов подъема и снижения. 2 ил.
Наверх