Видеоавтоколлиматор

Видеоавтоколлиматор содержит объектив, автоколлимационное зеркало, светоделительный узел, осветитель, отсчетное устройство, а также тест-марку и фотоприемник, установленные в фокальных плоскостях объектива. Изображение тест-марки, отраженное светоделительным узлом, объективом направляется на автоколлимационное зеркало, отражается от него и тем же объективом сквозь светоделительный узел проецируется на фотоприемник. Фотоприемник содержит ПЗС-матрицу с устройством формирования стандартного видеосигнала. Отсчетное устройство выполнено в виде компьютера с видеопроцессором и прикладной программой для вычисления углового положения автоколлимационного зеркала. Тест-марка выполнена в виде круглого окна, диаметр которого рассчитывается по формуле где ρ" - коэффициент перевода радиан в угловые секунды, М - эффективный размер ПЗС-матрицы в мм, К - число видеокадров, обрабатываемых в измерении, f' - фокусное расстояние объектива в мм, N - число дискретов, выделяемых по координатным осям видеокадра, Δφ - допустимая погрешность в угловых секундах. Технический результат - упрощение изготовления и эксплуатации. 1 ил.

 

Изобретение относится к области технической физики и, в частности, для измерения углового положения автоколлимационного зеркала.

Известны оптические автоколлиматоры, основанные на визуальном принципе измерений /1/. К ним, в частности, относятся широко распространенные автоколлиматоры АКУ-1, АКУ-0,5 и АКУ-2,5 соответственно с разрешением 1, 0,5 и 0,25 угловых секунды. Они содержат освещаемую тест-марку в виде перекрестия, установленную в фокальной плоскости объектива. Изображение тест-марки объективом в параллельных лучах света направляется на автоколлимационное зеркало, отражается от него, возвращается в объектив и через светоделительный узел проецируется на специальную шкалу, также установленную в фокальной плоскости объектива. Шкала, как правило, выполнена в виде сетки нитей. На нее проецируется изображение тест-марки, которое рассматривается с помощью окуляра. Измерения выполняются путем определения положения изображения тест-марки (перекрестия) относительно шкалы, которое пропорционально искомому угловому положению автоколлимационного зеркала.

Основным недостатком оптических автоколлиматоров является визуальный принцип измерений без возможности автоматизации.

Известны также фотоэлектрические автоколлиматоры, основанные на автоматизированном принципе измерений /2/. В них также используются тест-марки в виде щелей, изображения которых по двум каналам измерений проецируются на два фотоприемника, что позволяет определять угловые положения автоколлимационного зеркала в двух взаимно перпендикулярных плоскостях (вертикальной и горизонтальной). Сигналами фотоприемников управляются два сервомеханизма, отрабатывающие положения изображений тест-марок на фотоприемниках так, чтобы они принимали определенное «нулевое» положение. Результатами измерений служат выходные коды двух датчиков перемещений, связанных с сервомеханизмами. Для фазового разделения каналов измерений автоколлиматор снабжен электромеханическим модулятором света.

Недостатком фотоэлектрического автоколлиматора является сложная оптическая и кинематическая схемы.

Наиболее близким к заявленному изобретению по совокупности признаков (прототипом) является фотоэлектрический автоколлиматор типа АФ-1Ц, снабженный двумя каналами измерений, ввиду чего он содержит тест-марку в виде двух перекрестий, модулятор света, два фотоприемника, два сервомеханизма и два кодовых датчика положения. На основе сигналов фотоприемников сервомеханизмы отрабатывают «нулевое» положение изображений тест-марки в направлениях координатных осей, а результатами измерений служат выходные коды датчиков перемещений, пропорциональные угловым положениям автоколлимационного зеркала в направлениях этих осей (в горизонтальной и вертикальной плоскостях).

Прототипу присущи недостатки, связанные со сложными оптическими и электромеханическими узлами.

Задача, решаемая настоящим изобретением, состоит в устранении указанных недостатков путем упрощения оптического узла, исключения электромеханического узла, содержащего модуляторы света и сервомеханизмы, и упрощения тест-марки.

Для решения этой задачи в предлагаемом видеоавтоколлиматоре, содержащем автоколлимационное зеркало, объектив, светоделительный узел, осветитель, отсчетное устройство, а также тест-марку и фотоприемник, установленные в фокальных плоскостях объектива так, что изображение тест-марки, отраженное светоделительным узлом, объективом направляется на автоколлимационное зеркало, отражается от него и тем же объективом сквозь светоделительный узел проецируется на фотоприемник, отличающемся тем, что фотоприемник содержит ПЗС-матрицу с устройством формирования стандартного видеосигнала, отсчетное устройство выполнено в виде компьютера с видеопроцессором и прикладной программой для вычисления углового положения автоколлимационного зеркала, а тест-марка выполнена в виде круглого окна, диаметр которого рассчитывается по формуле:

,

где ρ″ - коэффициент перевода радиан в угловые секунды;

М - эффективный размер ПЗС-матрицы в мм;

К - число видеокадров, обрабатываемых в измерении;

f′ - фокусное расстояние объектива в мм;

N - число дискретов, выделяемых по координатным осям видеокадра;

Δφ - допустимая погрешность в угловых секундах.

Изобретение поясняется фиг.1, на которой изображены устройство формирования стандартного видеосигнала 1 с ПЗС-матрицей 2, осветитель 3 в виде полупроводникового светодиода, тест-марка 4 в виде круглого окна, светоделительный узел 5, объектив 6, компьютер 7 с видеопроцессором 8 и прикладной программой, а также автоколлимационное зеркало 9.

Видеоавтоколлиматор работает следующим образом.

Изображение тест-марки 4, отраженное светоделительным узлом 5, объективом 6 в параллельных лучах света направляется на автоколлимационное зеркало 9, отражается от него и тем же объективом 6 сквозь светоделительный узел 5 проецируется на ПЗС-матрицу 2, на основе сигналов которой в устройстве 1 формируется стандартный видеосигнал ВС, содержащий изображение тест-марки.

При изменении углового положения автоколлимационного зеркала 9 относительно оптической оси видеоавтоколлиматора координаты центра изображения тест-марки в видеокадре меняются, что и служит основанием для выполнения измерений.

Измерения выполняются под управлением прикладной компьютерной программы, и при этом видеосигнал видеопроцессором 8 преобразуется из аналоговой в цифровую форму, определяются координаты контурных точек круглого изображения тест-марки в видеокадре, на основе этих координат рассчитываются координаты центра изображения тест-марки в видеокадре и на основе последних координат - искомое угловое положение автоколлимационного зеркала 9 относительно оптической оси видеоавтоколлиматора.

Предлагаемый видеоавтоколлиматор в сравнении с прототипом содержит более простой оптический узел и тест-марку. В качестве фотоприемника в нем используется модульная телекамера с ПЗС-матрицей, формирующая стандартный видеосигнал с изображением тест-марки. Упомянутые модульные телекамеры производятся на промышленной основе и в массовом количестве, что обеспечивает их высокую надежность и незначительную стоимость. Работа со стандартным видеосигналом позволяет передавать его по стандартным телевизионным каналам, включая спутниковые, на любые расстояния. В качестве видеопроцессора могут использоваться типовые устройства - контролеры, фреймграбберы и видеобластеры, также производимые на промышленной основе и в массовом количестве.

Круглое окно тест-марки в сравнении с окном любой другой формы обладает преимуществом - при сканировании телевизионными строками круглого изображения в видеокадре координаты его центра не меняются при поворотах изображения.

С увеличением диаметра круглого окна тест-марки уменьшается погрешность видеоавтоколлиматора, но уменьшается диапазон угловых измерений, ввиду чего оптимальным является диаметр, рассчитанный по приведенной формуле.

Например, для М=4,8 мм, f=200 мм, N=767, К=16 и Δφ=0,1 угл. сек. получим D≈0,8 мм.

Источники информации

1. Спиридонов А.И., Кулагин Ю.Н., Крюков Г.С. Справочник - каталог геодезических приборов. М.: Недра, 1984, с.202.

2. Афанасьев В.А., Жилкин А.М., Усов В.С. Автоколлимационные приборы. М.: Недра, 1982, с.103.

Видеоавтоколлиматор, содержащий объектив, автоколлимационное зеркало, светоделительный узел, осветитель, отсчетное устройство, а также тест-марку и фотоприемник, установленные в фокальных плоскостях объектива так, что изображение тест-марки, отраженное светоделительным узлом, объективом направляется на автоколлимационное зеркало, отражается от него и тем же объективом сквозь светоделительный узел проецируется на фотоприемник, отличающийся тем, что фотоприемник содержит ПЗС-матрицу с устройством формирования стандартного видеосигнала, отсчетное устройство выполнено в виде компьютера с видеопроцессором и прикладной программой для вычисления углового положения автоколлимационного зеркала, а тест-марка выполнена в виде круглого окна, диаметр которого рассчитывается по формуле:

где ρ'' - коэффициент перевода радиан в угловые секунды;
М - эффективный размер ПЗС-матрицы, мм;
К - число видеокадров, обрабатываемых в измерении;
f' - фокусное расстояние объектива, мм;
N - число дискретов, выделяемых по координатным осям видеокадра;
Δφ - допустимая погрешность в угловых секундах.



 

Похожие патенты:

Изобретение относится к оптическому приборостроению и может быть использовано при юстировке и настройке телевизионных камер многоканальной телевизионной системы.

Изобретение относится к области оптического приборостроения, а именно к оптическим системам, коллимирующим излучение лазерного пучка с одновременной анаморфотной коррекцией формы поперечного сечения и углового распределения интенсивности лазерного пучка, а также суммирующим излучение двух или более полупроводниковых (далее - п/п) лазеров на одной оптической оси, и может быть использовано в системах оптической локации, оптической связи, управления и др.

Изобретение относится к области измерительной техники, к измерительным устройствам, характеризующимся оптическими средствами измерений, и может быть использовано для решения широкого круга технических задач, включающих измерение плоских углов, таких как юстировка оптико-электронных систем, сборка крупногабаритных конструкций, дистанционное измерение и дистанционная передача значений угла и др.

Изобретение относится к области измерительной техники и может быть использовано для решения широкого круга технических задач, таких как юстировка оптико-электронных систем, сборка крупногабаритных конструкций, определение параметров жесткости валов и др.

Изобретение относится к области контрольно-измерительной техники, в частности к приборам для контроля параметров телевизионных систем. .

Изобретение относится к контрольно-измерительной технике и может быть использовано при юстировке, настройке и сборке оптических систем. .

Изобретение относится к измерительной технике, к измерительным устройствам, характеризующимся оптическими средствами измерений, и может быть использовано для решения широкого круга технических задач, включающих измерение плоских углов, таких как юстировка оптико-электронных систем, сборка крупногабаритных конструкций, дистанционное измерение и дистанционная передача значений угла и др.

Изобретение относится к устройствам контроля работоспособности телевизионных следящих авиационных прицельных систем, а также для использования в качестве тренажера летного состава.

Изобретение относится к измерительным устройствам и может быть использовано для определения величины и направления углового перемещения объекта. .

Изобретение относится к оптико-электронным системам измерения расстояния, локации, наведения, связи и другим устройствам, в которых используется излучение полупроводниковых лазеров

Изобретение относится к области оптической контрольно-измерительной техники, а именно к коллиматорам, используемым для измерения или настройки параллельности визирных осей двух или более оптических систем, по меньшей мере, одна из которых является тепловизионной

Изобретение относится к оптическому приборостроению и может быть использовано для контроля и юстировки различных оптических деталей, сборок и приборов

Устройство может быть использовано для контроля формы поверхностей оптических деталей, а также для измерения неоднородностей оптических материалов. Устройство содержит осветитель, конденсор, задающий и анализирующий пространственные фильтры, приемно-регистрирующее устройство. Задающий и анализирующий пространственные фильтры совмещены и выполнены в виде симметричной зеркальной марки, нанесенной на тонкой плоскопараллельной оптической пластине. Геометрический центр марки совмещен с точкой пересечения оптических осей осветителя и приемно-регистрирующей системы. Пластина установлена таким образом, чтобы ее плоская поверхность с нанесенной на нее симметричной зеркальной маркой составляла равные углы с оптическими осями осветителя и приемно-регистрирующей системы. Технический результат - повышение точности контроля формы поверхностей оптических деталей и упрощение юстировки схемы контроля за счет конструктивного совмещения задающего и анализирующего пространственных фильтров. 3 ил.

Предлагаемое изобретение относится к оптическому приборостроению, а именно к объективам коллиматора, работающим в среднем ИК-диапазоне длин волн (для спектрального диапазона от 3 до 5 мкм), и может быть использовано в тепловизионных коллиматорах или в приемных тепловизионных объективах (в обратном ходе лучей) в различных приборах. Объектив коллиматора состоит из трех компонентов, причем первый компонент по ходу лучей выполнен в виде зеркала, обращенного выпуклостью к плоскости предметов, второй компонент выполнен в виде одиночного отрицательного мениска с отверстием в центре, обращенного выпуклостью к плоскости предметов, причем его выпуклая поверхность имеет зеркальное внутреннее покрытие и расположен он между первым компонентом и плоскостью предметов, и третьего мениска, обращенного выпуклостью к изображению и расположенного между первым компонентом и изображением, второй и третий компоненты выполнены из селенида цинка, а в первом компоненте зеркальное покрытие нанесено на выпуклую поверхность зеркала. Кроме того, радиус сферической оптической отражающей поверхности зеркала первого компонента по модулю равен радиусу выпуклой поверхности третьего компонента. Технический результат - повышение относительного отверстия, увеличение фокусного расстояния при упрощенной конструкции, повышенной технологичности и высоком качестве изображения. 1 з.п.ф-лы, 1 ил., 2 табл.

Объектив может использоваться для работы в видимом и ближнем ИК-диапазоне длин волн. Объектив коллиматора содержит первичное зеркало, на первую по ходу лучей поверхность которого нанесено зеркальное покрытие, вторичное зеркало с зеркальным покрытием на кольцевой периферийной части, причем отражающие поверхности зеркал обращены друг к другу, двухлинзовый оптический элемент, установленный за первичным зеркалом со стороны пространства изображений и состоящий по ходу лучей из одиночной отрицательной линзы, обращенной вогнутой поверхностью к пространству изображений, и одиночной двояковыпуклой линзы. Первичное и вторичное зеркала выполнены в виде сплошных плоско-параллельных пластин, на первичном зеркале зеркальное покрытие нанесено в его центральной зоне, периферийная часть - прозрачная. На первой со стороны предмета поверхности в центральной зоне вторичного зеркала расположен тест-объект, выполненный в виде прозрачной марки или перекрестия на непрозрачном фоне. Технический результат - увеличение фокусного расстояния, диаметра выходного зрачка при упрощенной конструкции и повышенной технологичности при сохранении высокого качества изображения. 1 ил., 2 табл.

Изобретение относится к способу (варианты) и системе (варианты) для лазерной сварки и может быть использовано для соединения различных деталей друг с другом. Система содержит источник (1) лазерного луча, коллиматор (2) лазерного луча и фокусирующее устройство (3). Оптический элемент (5) расположен между коллиматором (2) и фокусирующим устройством (3) и предназначен для развертывания системы распределения мощности лазерного луча в первом направлении, находящемся под углом к оси сколлимированного лазерного луча. В системе по первому варианту бифокальный элементом (6) расположен или между оптическим элементом (5) и коллиматором (2), или между оптическим элементом (5) и фокусирующим устройством (3). По второму варианту бифокальный элементом (6) расположен между коллиматором (2) и фокусирующим устройством (3). В результате обеспечивается гомогенность распределения мощности лазерного излучения в свариваемой области. 4 н. и 18 з.п. ф-лы, 9 ил.

Автоколлиматор может использоваться для измерения углов поворота относительно двух осей, ортогональных оптической оси объектива автоколлиматора, с использованием одной ПЗС-линейки. Автоколлиматор включает оптическую систему формирования автоколлимационного изображения марки из источника излучения, размещенных последовательно конденсора, марки, светоделителя и объектива, фотоприемное устройство в виде ПЗС-линейки с системой управления, включающей синхрогенератор, и системой обработки видеосигналов из фильтра нижних частот, формирователя видеоимпульсов и формирователя фронтов видеоимпульсов, и блок обработки информации. Марка и фотоприемное устройство установлены в фокальных плоскостях объектива. Введены последовательно соединенные селектор, пиковый детектор, сустрактор и усилитель мощности. Вход селектора подсоединен к выходу фильтра нижних частот, а выход усилителя мощности подключен к источнику излучения. Марка выполнена в виде набора непрерывных штрихов, образующих три горизонтальные зоны, средняя из которых выполнена из по крайней мере одного вертикального штриха и по крайней мере одного наклонного бокового штриха. Высота штрихов равна высоте зоны, горизонтальные сечения марки в разных зонах различаются количеством сечений штрихов или их взаимным расположением. Технический результат - повышение точности, компактности и надежности. 4 з.п. ф-лы, 3 ил.

Изобретение относится к коллиматорам, которые могут быть использованы для освещения жидкокристаллических экранов. Коллиматор выполнен в виде клиновидного оптического волновода, который имеет первый конец, второй конец, противолежащий первому концу. Причём первый конец тоньше второго конца. Также коллиматор содержит видимую поверхность, проходящую, по меньшей мере, частично между первым концом и вторым концом, и заднюю поверхность, противолежащую видимой поверхности. Видимая поверхность содержит первый критический угол внутреннего отражения, и задняя поверхность конфигурируется, чтобы являться отражательной под первым критическим углом внутреннего отражения. Кроме того, на втором конце оптического волновода размещен концевой отражатель, который содержит структуру многогранной (фасетчатой) линзы. Технический результат заключается в уменьшении габаритных размеров коллиматора. 2 н. и 13 з.п. ф-лы, 10 ил.
Наверх