Система дискретной передачи информации

Изобретение относится к телеметрии, технике связи и может быть использовано в системах передачи информации по дискретным каналам связи. Технический результат состоит в повышении точности передачи информации при фиксированных значениях динамического диапазона значений выборок первичного сигнала и стандартного отклонения нормального белого шума в канале связи. Система дискретной передачи информации содержит последовательно соединенные источник информации, дискретизатор, преобразователь значения выборок по модулю (2n-1), первый усилитель в (2n+1) раз, три сумматора, преобразователь значения выборок по модулю (2n+1), усилитель в (2n-1) раз, канал связи, квантователь значений выборок на (2n+1) уровней, второй усилитель в (2n+1) раз, квантователь значений выборок на (2n-1) уровней, второй усилитель в (2n-1) раз, усилитель в (2n-1) раз, преобразователь значения выборок по модулю (22n-1), фильтр нижних частот, получатель информации, два формирователя пороговых уровней. 2 з.п. ф-лы, 3 ил., 1 табл.

 

Изобретение относится к телеметрии, технике связи и может быть использовано в системах передачи информации по дискретным каналам связи.

Известна система дискретной передачи информации, содержащая: на передающей стороне - последовательно соединенные источник информации и дискретизатор, выход которого подключен к входу канала связи, а на приемной стороне - последовательно соединенные фильтр нижних частот, вход которого подключен к выходу канала связи, и получатель информации [1].

На передающей стороне известной системы дискретной передачи информации источник информации формирует первичный сигнал Sп(t), шкала Uш0=(22n×εмакс) значений которого в 22n раз превышает максимально допустимое значение εмакс погрешности. Сформированный первичный сигнал Sп(t) поступает на вход дискретизатора, на выходе которого формируют последовательность выборок Sд(t)=ΣSп(t-nTo) первичного сигнала путем его дискретизации с выбранной частотой Fo=1/To опроса.

Динамический диапазон Dп значений передаваемых по каналу связи выборок первичного сигнала в известной системе дискретной передачи информации составляет величину Dп=Uш0макс=22n. Количество информации на одну передаваемую по каналу связи выборку при этом равно Iп=log2(Dп)=2n бит.

В процессе передачи к указанной последовательности выборок добавляется нормальный белый шум n(t) с нулевым математическим ожиданием и стандартным отклонением σn. При этом значение ε≈σn погрешности значений принимаемых выборок в среднем определяется стандартным отклонением σn нормального белого шума n(t).

Условием обеспечения требуемой верности передачи по каналу связи выборок первичного сигнала является условие σn≤εмакс. В случаях, когда это условие не выполняется, значение ε=σnмакс погрешности значений принимаемых выборок превышает максимально допустимое значение εмакс погрешности. Поэтому недостатком известной системы дискретной передачи информации является недостаточная точность передачи информации.

Наиболее близкой к предлагаемой является система дискретной передачи информации, содержащая: на передающей стороне - последовательно соединенные источник информации, дискретизатор и вычитающее устройство, вход вычитания которого подключен через элемент задержки к выходу дискретизатора, а выход - к входу канала связи, а на приемной стороне - последовательно соединенные сумматор, фильтр нижних частот и получатель информации, при этом первый вход сумматора подключен к выходу канала связи, а второй вход сумматора соединен через элемент задержки с его выходом [2].

На передающей стороне известной системы дискретной передачи информации на выходе дискретизатора также формируют последовательность выборок Sд(t)=ΣSп(t-nТо) первичного сигнала Sп(t) путем его дискретизации с выбранной частотой Fo=1/To опроса. Затем с помощью вычитающего устройства преобразуют последовательности выборок Sд(t) первичного сигнала в последовательность приращений значения каждой выборки Sпр(t)=Σ{Sп(t-nTo)-Sп[t-(n-1)То]} первичного сигнала путем вычитания из него значения предшествующей выборки первичного сигнала.

Известная система дискретной передачи информации обеспечивает сокращение избыточности передаваемой информации за счет использования разностного представления передаваемых выборок. Однако, при этом значение ε≈σп погрешности значений принимаемых разностных выборок в среднем также определяется стандартным отклонением σп нормального белого шума n(t). Поэтому недостатком известной системы дискретной передачи информации также является недостаточная точность передачи информации.

Технический результат состоит в повышении точности передачи информации при фиксированных значениях динамического диапазона Dп значений выборок первичного сигнала и стандартного отклонения σn нормального белого шума n(t) в канале связи.

Для достижения указанного технического результата в систему дискретной передачи информации, содержащую: на передающей стороне - последовательно соединенные источник информации и дискретизатор, а на приемной стороне - последовательно соединенные фильтр нижних частот и получатель информации, введены: на передающей стороне - последовательно соединенные преобразователь значения выборок по модулю (2n-1), первый усилитель в (2n+1) раз и первый сумматор, последовательно соединенные преобразователь значения выборок по модулю (2n+1), первый усилитель в (2n-1) раз и второй сумматор, а также первый формирователь пороговых уровней, а на приемной стороне - последовательно соединенные квантователь значений выборок на (2n+1) уровней и второй усилитель в (2n+1) раз, последовательно соединенные квантователь значений выборок на (2n-1) уровней и второй усилитель в (2n-1) раз, последовательно соединенные третий сумматор, третий усилитель в (2n-1) раз и преобразователь значения выборок по модулю (22n-1), а также второй формирователь пороговых уровней, при этом выход дискретизатора подключен к информационным входам преобразователя значения выборок по модулю (2n-1) и преобразователя значения выборок по модулю (2n+1), пороговые входы которых соединены соответственно с первой и второй группой пороговых выходов первого формирователя пороговых уровней, первый и второй опорные выходы которого подключены к вторым входам соответственно первого и второго сумматоров, выходы которых соединены соответственно с первым и вторым входами канала связи, первый и второй выходы которого подключены к информационным входам соответственно квантователя значений выборок на (2n+1) уровней и квантователя значений выборок на (2n-1) уровней, пороговые входы которых соединены соответственно с первой и второй группой пороговых выходов второго формирователя пороговых уровней, третья группа пороговых выходов которого подключена к пороговым входам преобразователя значения выборок по модулю (22n-1), выходы второго усилителя в (2n+1) раз и второго усилителя в (2n-1) раз соединены соответственно с первым и вторым входами третьего сумматора 15, выход преобразователя значения выборок по модулю (22n-1) подключен к входу фильтра нижних частот.

В частном случае выполнения системы дискретной передачи информации преобразователь значения выборок по модулю N содержит квантователь значений выборок на N уровней и вычитающее устройство, при этом информационный вход преобразователя значения выборок по модулю N соединен с входом суммирования вычитающего устройства и с информационным входом квантователя значений выборок на N уровней, выход которого подключен к входу вычитания вычитающего устройства, а пороговые входы соединены с пороговыми входами преобразователя значения выборок по модулю N, выходом которого является выход вычитающего устройства.

Кроме того, в частном случае выполнения системы дискретной передачи информации квантователь значений выборок на N уровней содержит блок сравнения и коммутатор, при этом информационный вход квантователя значений выборок на N уровней соединен с информационным входом блока сравнения, N выходов которого подключены к соответствующим N управляющим входам коммутатора, выход которого является выходом квантователя значений выборок на N уровней, N пороговых входов которого соединены с соответствующими пороговыми входами блока сравнения и с соответствующими информационными входами коммутатора.

Предлагаемая система дискретной передачи информации производит передачу по каналу связи двух последовательностей разностных выборок с динамическими диапазонами Dп1=Dп/(2n-1) и Dп2=Dп/(2n+1) значений этих выборок соответственно, причем перед передачей по каналу связи значения разностных выборок усиливают соответственно в (2n+1) и (2n-1) раз. Это позволяет в среднем в соответствующее число раз после соответствующей обработки уменьшить значение ε погрешности значений принятых разностных выборок, что и обеспечивает положительный технический результат - повышение точности передачи информации при фиксированных значениях динамического диапазона Dп значений выборок первичного сигнала и стандартного отклонения σn нормального белого шума n(t) в канале связи.

Предлагаемая система дискретной передачи информации может быть реализована с помощью известных функциональных элементов.

На фиг.1 представлена структурная схема предлагаемой системы дискретной передачи информации, на фиг.2 - структурная схема преобразователя 3 значения выборок по модулю (2n-1), на фиг.3 - структурная схема квантователя 11 значений сигнала на (2n+1) уровней, в табл.1 представлены значения сигналов в сечениях данной схемы в разные моменты опроса (j=1, …, 25) при допустимом значении погрешности εмакс=1 и шкале значений первичного сигнала Uш0=(22n×εмакс)=256 для частного случая n=4.

Система дискретной передачи информации (см. фиг.1) на передающей стороне содержит последовательно соединенные источник 1 информации и дискретизатор 2, последовательно соединенные преобразователь 3 значения выборок по модулю (2n-1), первый усилитель 5 в (2n+1) раз и первый сумматор 7, последовательно соединенные преобразователь 4 значения выборок по модулю (2n+1), первый усилитель 6 в (2n-1) раз и второй сумматор 8, а также первый формирователь 9 пороговых уровней. Выход дискретизатора 2 подключен к информационным входам преобразователя 3 значения выборок по модулю (2n-1) и преобразователя 4 значения выборок по модулю (2n+1), пороговые входы которых соединены соответственно с первой и второй группой пороговых выходов первого формирователя 9 пороговых уровней, первый и второй опорные выходы которого подключены к вторым входам соответственно первого и второго сумматоров 7 и 8, выходы которых соединены соответственно с первым и вторым входами канала 10 связи.

Система дискретной передачи информации на приемной стороне содержит последовательно соединенные квантователь 11 значений выборок на (2n+1) уровней и второй усилитель 13 в (2n+1) раз, последовательно соединенные квантователь 12 значений выборок на (2n-1) уровней и второй усилитель 14 в (2n-1) раз, последовательно соединенные третий сумматор 15, третий усилитель 16 в (2n-1) раз, преобразователь 17 значения выборок по модулю (22n-1), фильтр 19 нижних частот и получатель 20 информации, а также второй формирователь 18 пороговых уровней. С первым и вторым выходами канала 10 связи соединены информационные входы соответственно квантователя 11 значений выборок на (2n+1) уровней и квантователя 12 значений выборок на (2n-1) уровней, пороговые входы которых соединены соответственно с первой и второй группой пороговых выходов второго формирователя 18 пороговых уровней, третья группа пороговых выходов которого подключена к пороговым входам преобразователя 17 значения выборок по модулю (22n-1), при этом выходы второго усилителя 13 в (2n+1) раз и второго усилителя 14 в (2n-1) раз соединены соответственно с первым и вторым входами третьего сумматора 15.

Предлагаемая система дискретной передачи информации функционирует следующим образом.

На передающей стороне источник 1 информации формирует первичный сигнал Sп(t), шкала Uш0=(22n×εмакс) значений которого в 22n раз превышает максимально допустимое значение εмакс погрешности.

Сформированный первичный сигнал Sп(t) подают на вход дискретизатора 2, на выходе которого формируют последовательность Sд(t)=ΣSп(t-jTo) выборок первичного сигнала путем его дискретизации с выбранной частотой Fo=1/То опроса. Значения Sп(t-jTo) первичного сигнала Sп(t) в различные моменты опроса (j=1, …, 25) приведены в столбце 2 табл.1.

Затем формируют первую и вторую последовательности S1пр(t) и S2пр(t) передаваемых выборок путем преобразования последовательности выборок Sп(t-jTo) первичного сигнала.

Для этого сформированную последовательность Sд(t) выборок первичного сигнала с выхода дискретизатора 2 подают на информационные входы преобразователя 3 значения выборок по модулю (2n-1) и преобразователя 4 значения выборок по модулю (2n+1).

С помощью преобразователя 3 значения выборок по модулю (2n-1) осуществляют преобразование значений выборок сформированной последовательности Sд(t) выборок первичного сигнала по модулю (2n-1). Для этого на пороговые входы преобразователя 3 значения выборок по модулю (2n-1) с первой группы пороговых выходов первого формирователя 9 пороговых уровней подают постоянные сигналы (2n+1) пороговых уровней, значения U1i=i(2n-1)×εмакс, [i=0, 2n] которых равномерно распределены в пределах шкалы Uш0 значений первичного сигнала. При этом преобразование значений выборок Sп(t-jTo) первичного сигнала по модулю (2n-1) осуществляют следующим образом: сравнивают значение Sп(t-jTo) каждой выборки первичного сигнала со значениями U1i всех (2n+1) пороговых уровней, определяют значение U1i макс (t-jTo) максимального из превышенных пороговых уровней и преобразуют значение Sп(t-jTo) каждой выборки первичного сигнала путем вычитания из него значения U1i макс (t-jTo) максимального из превышенных пороговых уровней. В результате на выходе преобразователя 3 значения выборок по модулю (2n-1) формируют первую последовательность S1пм (t)=ΣS1пм(t-jTo) преобразованных выборок (значения S1пм(t-jTo) соответствующих преобразованных выборок в различные моменты опроса приведены в столбце 3 табл.1).

С помощью преобразователя 4 значения выборок по модулю (2n+1) осуществляют преобразование значений выборок сформированной последовательности Sд(t) выборок первичного сигнала по модулю (2n+1). Для этого на пороговые входы преобразователя 3 значения выборок по модулю (2n+1) с второй группы пороговых выходов первого формирователя 9 пороговых уровней подают постоянные сигналы (2n-1) пороговых уровней, значения U1i=i(2n+1)×εмакс, [i=0, (2n-2)], которых равномерно распределены в пределах шкалы Uш0 значений первичного сигнала. При этом преобразование значений выборок Sп(t-jTo) первичного сигнала по модулю (2n+1) осуществляют следующим образом: сравнивают значение Sп(t-jTo) каждой выборки первичного сигнала со значениями U2i всех (2n-1) пороговых уровней, определяют значение U2i макс(t-jTo) максимального из превышенных пороговых уровней и преобразуют значение Sп(t-jTo) каждой выборки первичного сигнала путем вычитания из него значения U2i макс(t-jTo) максимального из превышенных пороговых уровней. В результате на выходе преобразователя 4 значения выборок по модулю (2n+1) формируют вторую последовательность S2пм(t)=ΣS2пм(t-jTo) преобразованных выборок (значения S2пм(t-jTo) соответствующих преобразованных выборок в различные моменты опроса приведены в столбце 4 табл.1).

Значения преобразованных выборок S1пм(t-jTo) первой последовательности S1пM(t) преобразованных выборок усиливают с помощью первого усилителя 5 в (2n+1) раз (значения S1пму(t-jTo) соответствующих усиленных преобразованных выборок в различные моменты опроса приведены в столбце 5 табл.1) и подают на первый вход первого сумматора 7.

Значения преобразованных выборок S2пм(t-jTo) второй последовательности S2пм(t) преобразованных выборок усиливают с помощью первого усилителя 6 в (2n-1) раз (значения S2пму(t-jTo) соответствующих усиленных преобразованных выборок в различные моменты опроса приведены в столбце 6 табл.1) и подают на первый вход второго сумматора 8.

При этом на второй вход первого сумматора 7 с первого опорного выхода первого формирователя 9 пороговых уровней поступает постоянный сигнал, значение которого в (2n-1)/2 раз превышает максимально допустимое значение σмакс погрешности. В результате на выходе первого сумматора 7 формируют первую последовательность передаваемых выборок S1пр(t-jTo)={[Sп(t-jTo)-U1i макс(t-jTo)](2n+1)+εмакс(2n-1)/2) (столбец 7 табл.1), которую подают на первый вход канала 10 связи.

В то же время на второй вход второго сумматора 8 с второго опорного выхода первого формирователя 9 пороговых уровней поступает постоянный сигнал, значение которого в (2n+1)/2 раз превышает максимально допустимое значение εмакс погрешности. В результате на выходе второго сумматора 8 формируют вторую последовательность передаваемых выборок S2пp(t-jTo)={[S2пр(t-jTo)-U2i макс(t-jTo)](2n-1)+εмакс(2n+1)/2} (столбец 8 табл.1), которую подают на второй вход канала 10 связи.

Сформированные на выходах первого и второго сумматоров 7 и 8 первую и вторую последовательности S1пр(t) и S2пр(t) выборок передают по каналу 10 связи на приемную сторону. В процессе передачи к указанным последовательностям выборок добавляются соответственно нормальные белые шумы n1(t) и n2(t). Значения n1(t-jTo) и n2(t-jTo) этих шумов при нулевом математическом ожидании и стандартном отклонении σn=3εмакс в различные моменты опроса приведены соответственно в столбцах 9 и 10 табл.1.

На приемной стороне принимают полученные первую и вторую последовательности S1пр*(t)=S1пр(t)+n1(t) и S2пр*(t)=S2пр(t)+n2(t) выборок (значения S1пр*(t-jTo) и S2пр*(t-jTo) выборок принятых первой и второй последовательностей выборок в различные моменты опроса приведены соответственно в столбцах 11 и 12 табл.1), после чего восстанавливают последовательность Sдв(t) выборок первичного сигнала путем преобразования принятых из канала 10 связи принятых первой и второй последовательностей выборок S1пр*(t) и S2пр*(t). Для этого выполняют следующие операции.

Принятые первую и вторую последовательности выборок S1пр*(t) и S2пр*(t) подают с первого и второго выходов канала 10 связи на информационные входы соответственно квантователя 11 значений выборок на (2n+1) уровней и квантователя 12 значений выборок на (2n-1) уровней.

С помощью квантователя 11 значений выборок на (2n+1) уровней осуществляют квантование значений выборок первой принятой последовательности S1пр*(t) выборок на (2n+1) уровней. Для этого на пороговые входы квантователя 11 значений выборок на (2n+1) уровней с соответствующих выходов первой группы пороговых выходов второго формирователя 18 пороговых уровней подают (2n+1) сигналов пороговых уровней, значения U1i=i(2n-1)×εмакс, [i=0,2n], которых равномерно распределены в пределах шкалы Uш0 значений первичного сигнала. При этом квантование значений выборок первой принятой последовательности S1пр*(t) выборок на (2n+1) уровней осуществляют следующим образом: сравнивают значение S1пр*(t-jTo) каждой выборки (см. столбец 11 табл.1) первой принятой последовательности S1пр*(t) выборок со значениями U1i всех (2n+1) пороговых уровней, определяют значение U1i макс (t-jTo) максимального из превышенных пороговых уровней и значение S1пр*к(t-jTo)=Ui; макс (t-jTo) каждой квантованной выборки (столбец 13 табл.1) первой последовательности S1пр*к(t) квантованных выборок принимают равным соответствующему значению U1i макс(t-jTo) максимального из превышенных пороговых уровней.

С помощью квантователя 12 значений выборок на (2n-1) уровней осуществляют квантование значений выборок второй принятой последовательности S2пр*(t) выборок на (2n-1) уровней. Для этого на пороговые входы квантователя 12 значений выборок на (2n-1) уровней с соответствующих выходов второй группы пороговых выходов второго формирователя 18 пороговых уровней подают (2n-1) сигналов пороговых уровней, значения U1i=i(2n+1)×εмакс, [i=0,2n-2], которых равномерно распределены в пределах шкалы Uш0 значений первичного сигнала. При этом квантование значений выборок второй принятой последовательности S2пр*(t) выборок на (2n-1) уровней осуществляют следующим образом: сравнивают значение S2пр*(t-jTo) каждой выборки (см. столбец 12 табл.1) второй принятой последовательности S2пр*(t) выборок со значениями U2i всех (2n-1) пороговых уровней, определяют значение U2i макс(t-jTo) максимального из превышенных пороговых уровней и значение S2пр*к(t-jTo)=U2i макс(t-jTo) каждой квантованной выборки (столбец 14 табл.1) второй последовательности S2пр*к(t) квантованных выборок принимают равным соответствующему значению U2i макс(t-jTo) максимального из превышенных пороговых уровней.

Первую последовательность S1пр*к(t) квантованных выборок подают с выхода квантователя 11 значений выборок на (2n+1) уровней на вход второго усилителя 13 в (2n+1) раз, с помощью которого усиливают в (2n+1) раз значение S1пр*к(t-jTo) каждой квантованной выборки первой последовательности квантованных выборок.

Вторую последовательность S2пр*к(t) квантованных выборок подают с выхода квантователя 12 значений выборок на (2n-1) уровней на вход второго усилителя 14 в (2n-1) раз, с помощью которого усиливают в (2n-1) раз значение S2пр*к(t-jTo) каждой квантованной выборки второй последовательности квантованных выборок.

Первую и вторую последовательности S1пр*ку(t) и S2пр*ку(t) усиленных квантованных выборок с выходов второго усилителя 13 в (2n+1) раз и второго усилителя 14 в (2n-1) раз подают соответственно на первый и второй входы третьего сумматора 15. С выхода третьего сумматора 15 на вход третьего усилителя 16 в (2n-1) раз подают единую последовательность SΣпр*ку(t) выборок, значения SΣпр*ку(t-jTo)=(2n+1) S1пр*к(t-jTo)+(2n-1) S2пр*к(t-jTo) выборок которой определяют путем суммирования значений (2n+1) S1пр*к(t-jTo) и (2n-1) S2пр*к(t-jTo) соответствующих усиленных квантованных выборок первой и второй последовательностей S1пр*ку(t-jTo) и S2пр*ку(t-jTo) усиленных квантованных выборок. С выхода третьего усилителя 16 в (2n-1) раз на информационный вход преобразователя 17 значения выборок по модулю (22n-1) подают единую последовательность SуΣпр*ку(t) усиленных выборок, значения SуΣпр*ку(t-jTo)=(2n-1) SΣпр*ку(t-jTo) которых (столбец 15 табл.1) определяют путем усиления значений SΣпр*ку(t-jTo) соответствующих выборок единой последовательности выборок в (2n-1) раз.

С помощью преобразователя 17 значения выборок по модулю (22n-1) осуществляют преобразование значений выборок единой последовательности SуΣпр*ку(t) усиленных выборок по модулю (22n-1). Для этого на пороговые входы преобразователя 17 значения выборок по модулю (22n-1) с соответствующих выходов третьей группы пороговых выходов второго формирователя 18 пороговых уровней подают (22n-1) пороговых уровней, значения U3i=i εмакс, [i=0, 22n-2] которых равномерно распределены в пределах шкалы Uш0 значений первичного сигнала. При этом преобразование значений выборок сформированной единой последовательности усиленных выборок по модулю (22n-1) осуществляют следующим образом: сравнивают значение SyΣпр*ку(t-jTo) каждой выборки единой последовательности усиленных выборок со значениями U3i всех (22n-1) пороговых уровней, определяют значение U3i макс(t-nTo) максимального из превышенных пороговых уровней и преобразуют значение SyΣпр*ку(t-jTo) каждой выборки единой последовательности усиленных выборок путем вычитания из него значения U3i макс(t-jTo) максимального из превышенных пороговых уровней. В результате на выходе преобразователя 17 значения выборок по модулю (22n-1) получают восстановленную последовательность Sдв(t)=ΣSпв(1-jTo) выборок (столбец 16 табл.1) первичного сигнала, имеющих значения Sпв(1-jTo).

Восстановленную последовательность выборок Sдв(t) первичного сигнала подают с выхода преобразователя 17 значения выборок по модулю (22n-1) на вход фильтра 19 нижних частот с частотой среза, равной половине частоты Fo опроса. С помощью фильтра 19 нижних частот восстанавливают первичный сигнал Sпв(t) путем фильтрации восстановленной последовательности Sдв(t) выборок первичного сигнала.

Восстановленный первичный сигнал Sпв(t) с выхода фильтра 19 нижних частот подают на вход получателя 20 информации.

В частном случае выполнения системы дискретной передачи информации преобразователь значения выборок по модулю N, например, преобразователь 3 значения выборок по модулю N=(2n-1) (см. фиг.2), содержит квантователь 21 значений выборок на N уровней и вычитающее устройство 22. Информационный вход преобразователя 3 значения выборок по модулю N соединен с входом суммирования вычитающего устройства 22 и с информационным входом квантователя 21 значений выборок на N уровней, выход которого подключен к входу вычитания вычитающего устройства 22, а пороговые входы соединены с пороговыми входами преобразователя 3 значения выборок по модулю N, выходом которого является выход вычитающего устройства 22.

Преобразователь значения выборок по модулю N (см. фиг.2) функционирует следующим образом. С информационного входа преобразователя 3 значения выборок по модулю N на вход суммирования вычитающего устройства 22 и на информационный вход квантователя 21 значений выборок на N уровней поступает последовательность выборок входного сигнала со значениями S(t-jTo), находящимися в пределах шкалы Uш значений входного сигнала. При этом на пороговые входы квантователя 21 значений выборок на N уровней с пороговых входов преобразователя 3 значения выборок по модулю N подают постоянные сигналы N пороговых уровней со значениями Ui=iUш/N, i=0, N-1. С выхода квантователя 21 значений выборок на N уровней на вход вычитания вычитающего устройства 22 поступает последовательность квантованных выборок, значения Sк(t-jTo)=Ui макс(t-jTo) которых равны соответствующим значениям Ui макс(t-jTo) максимальных из превышенных пороговых уровней. В результате на выходе вычитающего устройства 22 значение S(t-jTo) каждой выборки входного сигнала уменьшается на значение Ui макс(t-jTo) максимального из превышенных пороговых уровней.

В частном случае выполнения системы дискретной передачи информации квантователь значений выборок на N уровней, например, квантователь 11 значений выборок на N=(2n+1) уровней (см. фиг.3), содержит блок 23 сравнения и коммутатор 24. Информационный вход квантователя 11 значений выборок на N уровней соединен с информационным входом блока 23 сравнения, N выходов которого подключены к соответствующим N управляющим входам коммутатора 24, выход которого является выходом квантователя 11 значений выборок на N уровней. При этом N пороговых входов квантователя 11 значений выборок на N уровней соединены с соответствующими пороговыми входами блока 23 сравнения и с соответствующими информационными входами коммутатора 24.

Квантователь 11 значений выборок на N уровней (см. фиг.3) функционирует следующим образом. С информационного входа квантователя 11 значений выборок на N уровней на информационный вход блока 23 сравнения поступает последовательность выборок входного сигнала со значениями S(t-jTo), находящимися в пределах шкалы Uш значений входного сигнала. При этом на информационные входы коммутатора 24 и на пороговые входы блока 23 сравнения с пороговых входов квантователя 11 значений выборок на N уровней подают постоянные сигналы N пороговых уровней со значениями Ui=iUш/N, i=0, N-1. Блок 23 сравнения сравнивает значение S(t-nTo) каждой выборки входного сигнала со значениями Ui(t-nTo) всех N пороговых уровней и формирует на каждом из N выходов либо сигнал логической «1», если значение S(t-nTo) выборки входного сигнала превышает значение Ui(t-nTo) соответствующего порогового уровня, либо сигнал логического «0», если значение S(t-nTo) выборки входного сигнала не превышает значение Ui(t-nTo) соответствующего порогового уровня. В результате количество логических «1» на выходах блока 23 сравнения равно номеру iмакс(1-nTo) максимального из превышенных пороговых уровней. N сигналов с N выходов блока 23 сравнения поступают на соответствующие управляющие входы коммутатора 24, что обеспечивает появление на его выходе постоянного сигнала с значением максимального из превышенных пороговых уровней Ui макс(t-To), который проходит на выход квантователя 11 значений выборок на N уровней. В результате на выходе квантователя 11 значений выборок на N уровней получают последовательность квантованных выборок, значения Sк(t-jTo)=Ui макс(t-jTo) которых равны соответствующим значениям Ui макс(t-jTo) максимальных из превышенных пороговых уровней.

Основу изобретения составляет такой выбор типа преобразования выборок первичного сигнала, при котором значение погрешности их восстановления на приемной стороне уменьшается в несколько раз при фиксированных значениях динамического диапазона Dп значений выборок первичного сигнала и стандартного отклонения σп нормального белого шума n(t) в канале связи.

Например, в приведенном примере (см. табл.1) реализации заявленного способа дискретной передачи информации при значении динамического диапазона значений выборок первичного сигнала Dп=Uш0макс=22n=256 (n=4) нормальные белые шумы n1(t) и n2(t) в канале связи характеризуются нулевым математическим ожиданием и стандартным отклонением σn=3εмакс. Значения n1(t-jTo) и n2(t-jTo) этих шумов (см. столбцы 9 и 10 табл.1) в различные моменты времени в несколько раз превышают допустимое значение погрешности εмакс=1. При этом значения Sпв(1-jTo) восстановленных выборок (столбец 16 табл.1) первичного сигнала на приемной стороне совпадают с соответствующими значениями Sп(t-jTo) выборок (столбец 2 табл.1) первичного сигнала на выходе дискретизатора на передающей стороне.

Таким образом, достигается технический результат - повышение точности передачи информации при фиксированных значениях динамического диапазона Dп значений выборок первичного сигнала и стандартного отклонения σn нормального белого шума n(t) в канале связи.

Литература

1. Кошевой А.А. Телеметрические комплексы летательных аппаратов. - М.: Машиностроение, 1975, с.28, 29, 41, 57-59, 70-72.

2. Радиотехнические системы передачи информации: Учеб. Пособие для вузов / В.А.Борисов, В.В.Калмыков, Я.М.Ковальчук и др.; Под. ред. В.В.Калмыкова. - М.: Радио и связь, 1990, с.24-27.

1. Система дискретной передачи информации, содержащая на передающей стороне последовательно соединенные источник информации и дискретизатор, а на приемной стороне - последовательно соединенные фильтр нижних частот и получатель информации, отличающаяся тем, что введены: на передающей стороне - последовательно соединенные преобразователь значения выборок по модулю (2n-1), первый усилитель в (2n+1) раз и первый сумматор, последовательно соединенные преобразователь значения выборок по модулю (2n+1), усилитель в (2n-1) раз и второй сумматор, а также первый формирователь пороговых уровней, а на приемной стороне - последовательно соединенные квантователь значений выборок на (2n+1) уровней и второй усилитель в (2n+1) раз, последовательно соединенные квантователь значений выборок на (2n-1) уровней и второй усилитель в (2n-1) раз, последовательно соединенные третий сумматор, усилитель в (2n-1) раз и преобразователь значения выборок по модулю (22n-1), а также второй формирователь пороговых уровней, при этом выход дискретизатора подключен к информационным входам преобразователя значения выборок по модулю (2n-1) и преобразователя значения выборок по модулю (2n+1), пороговые входы которых соединены соответственно с первой и второй группой пороговых выходов первого формирователя пороговых уровней, первый и второй опорные выходы которого подключены к вторым входам соответственно первого и второго сумматоров, выходы которых соединены соответственно с первым и вторым входами канала связи, первый и второй выходы которого подключены к информационным входам соответственно квантователя значений выборок на (2n+1) уровней и квантователя значений выборок на (2n-1) уровней, пороговые входы которых соединены соответственно с первой и второй группой пороговых выходов второго формирователя пороговых уровней, третья группа пороговых выходов которого подключена к пороговым входам преобразователя значения выборок по модулю (2n-1), выходы второго усилителя в (2n+1) раз и второго усилителя в (2n-1) раз соединены соответственно с первым и вторым входами третьего сумматора 15, выход преобразователя значения выборок по модулю (22n-1) подключен к входу фильтра нижних частот.

2. Система дискретной передачи информации по п.1, отличающаяся тем, что преобразователь значения выборок по модулю N содержит квантователь значений выборок на N уровней и вычитающее устройство, при этом информационный вход преобразователя значения выборок по модулю N соединен с входом суммирования вычитающего устройства и с информационным входом квантователя значений выборок на N уровней, выход которого подключен к входу вычитания вычитающего устройства, а пороговые входы соединены с пороговыми входами преобразователя значения выборок по модулю N, выходом которого является выход вычитающего устройства.

3. Система дискретной передачи информации по п.1, отличающаяся тем, что квантователь значений выборок на N уровней содержит блок сравнения и коммутатор, при этом информационный вход квантователя значений выборок на N уровней соединен с информационным входом блока сравнения, N выходов которого подключены к соответствующим N управляющим входам коммутатора, выход которого является выходом квантователя значений выборок на N уровней, N пороговых входов которого соединены с соответствующими пороговыми входами блока сравнения и с соответствующими информационными входами коммутатора.



 

Похожие патенты:

Изобретение относится к телеметрии, технике связи и может быть использовано в системах передачи информации по цифровым каналам связи. .

Изобретение относится к телеметрии, технике связи и может быть использовано в системах передачи информации по дискретным каналам связи. .

Изобретение относится к телеметрии, технике связи, а также к системам передачи информации по цифровым каналам связи. .

Изобретение относится к телеметрии, технике связи, а также к системам передачи информации по цифровым каналам связи. .

Изобретение относится к телеметрии, технике связи и может быть использовано в системах передачи информации по дискретным каналам связи. .

Изобретение относится к телеметрии. .

Изобретение относится к передачи данных процесса от полевого устройства в центр управления процессом. .

Изобретение относится к информационно-управляющим комплексам и может быть использовано для кодирования и спорадической передачи информации о текущем состоянии датчиков дискретных сигналов, отображающих состояние (положение) двухпозиционных исполнительных механизмов (датчиков), цепей охранной и пожарной сигнализации, а также для передачи информации о последовательности изменений указанных сигналов.

Изобретение относится к информационно-управляющим комплексам и может быть использовано для кодирования и спорадической передачи информации о состоянии датчиков дискретных сигналов, отображающих состояние (положение) двухпозиционных исполнительных механизмов, цепей охранной и пожарной сигнализации.

Изобретение относится к информационно-управляющим комплексам для автоматизированных систем управления электрифицированными участками железных дорог. .

Изобретение относится к технике связи и может быть использовано в телеметрии и для передачи данных по каналам связи

Изобретение относится к телеметрии, технике связи и может быть использовано в системах передачи информации по цифровым каналам связи

Способ совместной обработки телеметрических сигналов с временным разделением каналов, зарегистрированных на пространственно разнесенных измерительных средствах, относится к радиотехнике, телеизмерительной технике. Технический результат - сокращение потерь телеизмерений, связанных с пороговым эффектом приемной аппаратуры, возникающем при неблагоприятных условиях приема на пространственно разнесенных измерительных средствах. Такой результат достигается тем, что способ предполагает формирование обобщенного массива данных, на основе совместной обработки сигналов, зарегистрированных на пространственно разнесенных измерительных средствах способом фиксации мгновенных значений квадратурных составляющих сигнала промежуточной частоты, до решающих устройств, что позволит получить в результате совместной обработки улучшение соотношения сигнал-шум на входе решающего устройства. 3 ил.

Изобретение относится к телеметрии, технике связи и может быть использовано в системах передачи информации по цифровым каналам связи. Технический результат - повышение помехоустойчивости системы синхронизации средств измерений и передачи информации, минимизация вероятности ложных выходов из синхронизма за счет сбоев при приеме информации, уменьшение вероятности ложного поиска синхронизма за счет случайной имитации сигнала синхронизации в принятом цифровом групповом сигнале; уменьшение времени установления режима синхронизации передаваемых и принимаемых сигналов. Для этого осуществляют выбор сигнала синхронизации (СС), состоящего из трех кодовых конструкций и организуют три параллельных канала обработки. В первом канале осуществляют согласованную корреляционную обработку кодовых последовательностей, состоящих из nk бит, с целью идентификации СС в целом. Во втором канале определяют наличие признаков СС среди анализируемых кодовых конструкций на основе корреляционной обработки (nk/2-1) символов с добавленным символом контроля четности бит «0», находящихся в средине исходного СС. При этом первые nk/4 символа «0» СС и последние его nk/4 символа «1» используют для уменьшения вероятности ложного опознания СС и повышения достоверности нахождения истинного СС. 2 з.п. ф-лы, 6 ил., 7 табл.

Группа изобретений относится к телеметрии. Технический результат заключается в реализации принципов адаптации телеметрических систем, проявляющихся в обеспечении возможностей мониторинга по получаемой информации нештатных ситуаций, требующих повышения помехоустойчивости системы синхронизации, изменения разрядности данных, структур сообщений в групповом сигнале, частоты опроса параметров в условиях следующих ограничений: на точностные характеристики результатов измерений, на спектрально-энергетические показатели каналов связи, время получения и передачи измерительной информации в условиях различного рода помех. Он достигается тем, что реализуют следующие возможности способа: 1) сжатое представление результатов телеизмерений в групповом сигнале; 2) замена несодержательной информации на избыточные символы помехоустойчивых кодов; 3) изменение частот опроса информационно-значимых телеметрируемых параметров и разрядности представления результатов телеизмерений; 4) замена существующих синхросигналов на составные шумоподобные кодовые конструкции двойного назначения. 2 н. и 3 з.п. ф-лы, 20 ил.

Изобретения относятся к способу и системе для программирования универсального пульта дистанционного управления. Техническим результатом является автоматическое генерирование макрокоманд для универсального пульта дистанционного управления из последовательности команд, выполненных пользователем посредством исходного пульта дистанционного управления. Способ программирования универсального пульта дистанционного управления заключается в том, что выполняется запрос пользователя на выполнение последовательности команд, содержащей более одной команды из исходного пульта дистанционного управления, для управления устройством (306). Команды из вышеупомянутой последовательности захватываются и анализируются (308). Проанализированные команды сопоставляются с кодовым набором или ветвями базы данных кодового дерева (310). Последовательность команд используется для генерирования макрокоманды для выполнения действия, в котором принимает участие устройство (316). 3 н. и 7 з.п. ф-лы, 4 ил.

Изобретение относится к способу и системе передачи информации. Технический результат заключается в повышении достоверности передаваемой информации. Для этого осуществляют преобразование двоичного кода в две последовательности логического троичного кода с символами S0, S1, S2 и Т0, T1, Т2, при этом на первом этапе модуляции первую последовательность сигналов S0, S1, S2 представляют в виде амплитудно-импульсной модуляции (АИМ3), а вторую Т0, Т1, Т2 - в виде широтно-импульсной модуляции (ШИМ3). Затем на втором этапе модуляции сигнала, передаваемого по каналу связи, АИМ3 преобразуют в частотную модуляцию (ЧМ3), а амплитуду частотно-модулированных колебаний ставят в соответствие со значениями символов S0, S1, S2 троичного кода. При этом три фиксированные длительности ШИМ3, преобразуют в бинарную фазовую модуляцию Ф М 2 ( 3 ) , при которой в моменты изменения длительности ШИМ меняют фазу несущей частоты с комбинированной модуляцией ЧМ3+АМ3 на 180°. На приемной стороне для демодуляции сформированного на передающей стороне сигнала, помимо частотного и фазовых демодуляторов в каждом из каналов выделения частотных составляющих принимаемого сигнала, используют амплитудный демодулятор, полученные результаты амплитудной демодуляции сравнивают с данными, полученными частотным и фазовым демодуляторами. 2 н. и 3 з.п. ф-лы, 4 ил.

Изобретение относится к телеметрии и может быть использовано в системах передачи данных по каналам связи при летных испытаниях ракетно-космической техники. Технический результат заключается в обеспечении сжатия данных телеизмерений на синтаксическом - битовом уровне при уменьшении погрешностей квантования телеметрируемых параметров (ТМП) и повышении помехоустойчивости передачи сообщений. В способе и системе осуществляют многошкальные измерения, когда один и тот же информационно-значимый ТМП приходилось представлять и передавать в нескольких шкалах измерений, например в грубой и точной, при этом исключают эффект «зашкаливания» значений ТМП в нештатных и аварийных ситуациях, поскольку заранее выбранные шкалы телеизмерений не будут соответствовать реальным их значениям, полученным в ходе летного эксперимента. На передающей стороне слова-измерения преобразуют в образы-остатки путем операций, эквивалентных делению их значений на выбранные определенным образом числа, представляющие собой модули сравнения, из образов-остатков формируют новые информационные слова и расставляют их в уплотненном цифровом групповом телеметрическом сигнале в определенной последовательности по отношению к сигналам синхронизации, сформированный из образов-остатков цифровой уплотненный групповой телеметрический сигнал подвергают последующей модуляции и передаче, а на приемной стороне принимают полученную последовательность переданных символов двоичного кода, формируют восстановленную последовательность информационных слов и осуществляют их обработку с целью восстановления первоначальных результатов измерений с исправлением ошибок передачи и оцениванием достоверности полученной информации. 2 н. и 5 з.п. ф-лы, 6 ил.

Изобретение относится к системам передачи информации по цифровым каналам связи. Технический результат заключается в обеспечении помехозащищенности передаваемой информации за счет структурно-алгоритмического преобразования (САП) результатов телеметрии, в обеспечении контроля и исправления ошибок. На передающей стороне каждое из значений слов-измерений, умноженных на первый модуль сравнения, представляют образами-остатками, найденными путем операций, эквивалентных делению полученного результата умножения на значение второго модуля сравнения, в качестве которого используют шкалу представления Ш = 22n. При приеме используют два алгоритма декодирования, условно называемых «жесткий», являющийся универсальным, и «мягкий», использование которого обеспечивает обнаружение и исправление ошибок передачи. 2 н. и 1 з.п. ф-лы, 7 ил.

Изобретение относится к телеметрии, радиотехническим системам измерений, технике связи и может быть использовано для обеспечения синхронизации за минимальное время передаваемых и принимаемых сообщений и сигналов в условиях помех. Технический результат состоит в повышении помехозащищенности процесса выделения и идентификации сигнала синхронизации в условиях помех. Осуществляют выбор сигнала синхронизации (СС), состоящего из трех равных по длине (разрядности представления) кодовых конструкций (ККi, i=1, 2, 3), при этом используют четыре параллельных канала обработки: в первом канале определяют символьную автокорреляционную функцию (АКФ) для последовательно поступающих символов цифрового группового сигнала по отношению к символам идентичной копии синхро-слова, хранящейся в блоке памяти на приемной стороне, во втором, третьем и четвертом каналах обработки определяют АКФ, в результате суммирования которых получают сверхидеальный код Баркера, сравнивают значения полученных АКФ с установленными пороговыми уровнями, по результатам сравнения идентифицируют СС, в том числе и искаженный помехами при передаче. 2 н.п. ф-лы, 6 ил.
Наверх