Способ сухого вспенивания полистирола



Способ сухого вспенивания полистирола
Способ сухого вспенивания полистирола
Способ сухого вспенивания полистирола

 


Владельцы патента RU 2466018:

Мучулаев Юрий Анатольевич (RU)

Изобретение направлено на повышение производительности процесса и кратности вспенивания полистирола ПСВ. Технический результат достигают тем, что способ сухого вспенивания полистирола включает кратковременный нагрев гранул ПСВ в воздушной среде, последующее кратковременное воздействие вакуума на нагретые гранулы, последующее охлаждение гранул под вакуумом ниже температур вязкотекучего состояния полистирола и после охлаждения снятие вакуума. Сухой нагрев гранул ПСВ осуществляют в герметичной емкости, заполненной горячим воздухом. При этом вакуум создают откачкой воздуха из герметичной емкости. Охлаждение гранул осуществляют преимущественно за счет излучения тепловой энергии гранул. 2 з.п. ф-лы, 3 ил.

 

Способ сухого вспенивания полистирола ПСВ относится к технологии получения гранулированного пенополистирола для строительства.

Гранулы пенополистирола получают из сырьевых гранул полистирола ПСВ (полистирол суспензионный вспенивающийся), выпускаемого химической промышленностью. Сырьевые гранулы насыщены молекулами легкокипящего продукта изопентан с температурой кипения 28°С. При нагревании гранул полистирол гранул переходит постепенно в вязкотекучее состояние, а изопентан вскипает и давлением своих паров расширяет материал гранул; происходит вспенивание (вспучивание) полистирола. В технологии применяется температура около 100°С; это - естественная привязка к температуре кипения воды и к температуре водяного пара при нормальном атмосферном давлении. Сырьевые гранулы имеют малые размеры: в основном от 0,5 до 2,0 мм и при вспенивании многократно увеличиваются в объеме. Из вспененных гранул изготавливают формованные теплоизоляционные изделия в виде плит и сегментов, а также гранулы добавляют в бетон в качестве легкого заполнителя с получением полистиролбетона - малотеплопроводного, легкого и достаточно прочного материала для строительства домов.

Известен способ вспенивания полистирола горячей водой [А.с. 1578020 А1, кл. В29С 67/22, опубл. 15.07.90]. Этот способ дает хороший результат по кратности вспенивания гранул. Способ прост, несложно и технологическое оборудование. Преимуществом способа является возможность получения низкой скорости вспенивания полистирола при температуре воды ниже 100°С с контролируемым получением плотностей продукта в интервале от 200 до 20 кг/м3. Недостатком способа является так называемые «мокрые процессы» (применение воды, испарение воды, необходимость сушки гранул). Кроме того, гранулы, получаемые этим способом, необходимо не только высушить, но и выдержать после сушки до 24 часов в воздушной среде нормальной температуры и влажности для снятия вакуума в них, иначе они легко сплющиваются при механических воздействиях. До сих пор не удалось создать высокопроизводительное технологическое оборудование, реализующее этот способ, поэтому способ в настоящее время в производстве не применяется.

Известен способ вспенивания полистирола ПСВ в среде горячего водяного пара [А.с. 1458244 А1, кл. В29С 67/20, опубл. 15.02.89]; этот способ повсеместно применяется в строительном производстве. По этому способу получают вспененные гранулы пенополистирола с насыпной плотностью от 8 кг/м3 и выше. Промышленностью выпускаются вспениватели малой и большой производительности. Недостатком способа является так называемые «мокрые процессы» (применение воды, генерация из нее пара, необходимость сушки полученного материала). Кроме того, гранулы, получаемые этим способом, необходимо не только высушить, но и выдержать после сушки до 24 часов в воздушной среде при нормальных температуре и влажности для снятия вакуума в них, иначе они легко сплющиваются при механических воздействиях. Ведение процесса требует генерации значительного количества горячего водяного пара, на что затрачивается большое количество тепловой энергии.

Реальным недостатком способа является очень быстрое вспенивание в зоне плотностей продукта от 200 до 20 кг/м3, что затрудняет получение продукта с заданной плотностью в этом интервале. Это усугубляется невозможностью быстро определить плотность получаемого продукта по ходу этого быстрого процесса вспенивания, исчисляемого секундами, так как для определения плотности мокрого продукта требуется сначала высушивать его пробу в течение нескольких часов.

В связи с тем, что значительное количество гранулированного пенополистирола применяется в качестве легкого заполнителя бетона, в технологии полистиролбетона актуально упрощение и удешевление технологии, снижение энергозатрат, снижение насыпной плотности гранулированного пенополистирола для удешевления изделий из полистиролбетона.

Известен способ, взятый за прототип изобретения, А.С. 680628, МКИ3 В29D 27/00, опубл. 25.08.79, и устройство сухого вспенивания полистирола горячим воздухом. При этом не требуется ни горячая вода, ни горячий водяной пар, не требуются сушка вспененных гранул и длительная выдержка, т.к. вакуум в них снимается по ходу процесса вспенивания. Соответственно, требуется меньше технологического оборудования, снижаются энергозатраты, экономятся производственные площади и пр. Вспенивание происходит более плавно, чем при вспенивании водяным паром, и это полезно при получении продукта повышенной плотности. Снизить скорость вспенивания легко за счет снижения температуры воздуха. Сухое вспенивание позволяет оперативно контролировать текущую плотность продукта по ходу процесса и своевременно регулировать его. Однако при сухом вспенивании затрачивается в 3-4 раза больше времени, чем при мокром вспенивании, а повышение температуры воздуха приводит к оплавлению гранул. Также не удается изготовить гранулированный пенополистирол плотностью ниже 16 кг/м3.

Автор предлагаемого изобретения длительное время занимается исследованием способа сухого вспучивания полистирола, разработкой и изготовлением суховоздушных вспучивателей, научно-технические отчеты имеют государственную регистрацию, получены патенты на суховоздушные вспучиватели. Вспучиватели, изготовляемые предприятием автора, более совершенны, минимальная плотность вспученного продукта, получаемого на этих вспучивателях в процессе однократного непрерывного вспучивания, достигает 10 кг/м3. Термины вспенивание и вспучивание в настоящее время, по последним публикациям, считаются однозначными. Более распространен термин вспенивание, поэтому далее применяется именно он. В процессе исследований попутно изучены и процессы вспенивания полистирола горячей водой и горячим водяным паром. Выявлено, что вспенивания горячей водой и горячим водяным паром дают продукт минимальной плотности, равной 15 кг/м3. И только вторичное вспенивание уже вспененного продукта после его сушки и суточной вылежки позволяет достичь плотности 8 кг/м3.

Это объясняется следующим. Давление паров изопентана при 20°С (293 К) равно 79 кПа, что меньше давления окружающего воздуха (техническая атмосфера 98 кПа, физическая атмосфера 101 кПа). За счет нагрева до 100°С давление паров несколько увеличится. К сожалению, отсутствуют данные о давлении паров изопентана при температуре около 100°С. Если бы изопентан был при этой температуре газом, то давление его повысилось бы при нагреве от 20°С (293К) до 100°С (373°С) в 373/293=1,27 раза и достигло 79 1,27=100,33 кПа. Это близко к атмосферному давлению, т.е. распирающее избыточное давление не преодолело бы сопротивление полимера. Вероятно, давление паров изопентана все же несколько выше атмосферного давления, поэтому в действительности гранулы все же вспениваются, хотя и не очень активно в конце процесса - в области низких плотностей продукта.

Цель изобретения - создать технологию изготовления гранулированного пенополистирола способом сухого вспенивания с получением продукта минимальной плотности при минимальной длительности процесса, что соответствует максимальной производительности технологии.

Поставленная цель достигается тем, что в способе сухого вспенивания полистирол ПСВ нагревают кратковременно и затем кратковременно воздействуют на него вакуумом, после чего охлаждают, не снимая вакуум, а после охлаждения гранул ниже температур вязкотекучего состояния полистирола снимают вакуум.

Сухой нагрев гранул осуществляют в герметичной емкости, заполненной горячим воздухом, а вакуум создают откачкой воздуха из емкости.

Охлаждение гранул осуществляют преимущественно за счет излучения тепловой энергии гранул.

В результате устранения наружного атмосферного противодавления давление паров изопентана реализуется в максимально возможной мере - в максимальной кратности и максимальной скорости вспенивания гранул. Увеличение (вспенивание) гранул продолжается до тех пор, пока давление паров изопентана, уменьшающееся из-за его расширения и частичной диффузии из гранул, не уравновесится упругими противодействующими напряжениями материала гранул. При этом минимальная длительность процесса вспенивания способствует снижению потерь изопентана, соответственно - максимальной кратности вспенивания. Кроме того, сохранение максимально возможного количества изопентана существенно для технологии формования пенополистирольных изделий, где формование изделий осуществляется путем вторичного вспенивания пенополистирольных гранул за счет остаточного изопентана и проникшего в гранулы воздуха.

Охлаждение гранул фиксирует структуру материала гранул, а действие вакуума во время охлаждения гранул не позволяет им сжаться, благодаря этому увеличенные размеры гранул сохраняются и после снятия вакуума.

Снижение плотности продукта и повышение производительности процесса приведет к снижению стоимости гранулированного пенополистирола и к реализации в полной мере всех указанных преимуществ процесса сухого вспенивания ПСВ.

На фигуре 1 представлена фотография гранул, полученных различными способами:

- верхний ряд гранул получен традиционным способом вспенивания сырьевых гранул полистирола в среде горячего водяного пара (над зеркалом кипящей воды);

- средний ряд гранул получен вспениванием сырьевых гранул полистирола в кипящей воде;

- нижний ряд гранул получен предлагаемым способом сухого вспенивания сырьевых гранул полистирола (сухой нагрев в среде горячего воздуха с последующим вакуумированием).

На фигуре 2 представлена фотография лабораторного устройства для реализации предлагаемого способа на одиночной грануле, которая отмечена позицией 1, в положении, когда гранула находится в зоне нагрева.

На фигуре 3 представлена фотография лабораторного устройства для реализации предлагаемого способа на одиночной грануле, которая отмечена позицией 1, когда гранула выведена из зоны нагрева для охлаждения.

Устройство позволяет нагревать отдельную гранулу ПСВ, находящуюся на выдвижном поддончике, в среде горячего сухого воздуха. Нагреватель выполнен в виде скобы, охватывающей некоторое пространство объемом около 50 см3 вокруг поддончика с гранулой.

Нагреватель гранулы размещен в съемном стеклянном колпаке, как это видно на фотографиях, устройство выполнено герметичным с подводкой к вакуум-насосу. Нагреватель управляется автоматически электронным прибором, позволяющим задавать и удерживать заданную температуру нагревателя в определенных пределах.

Пробными экспериментами в интервале температур 100…125°С установлена оптимальная для эксперимента температура задатчика нагревателя 115°С, это соответствует температуре воздуха в зоне размещения гранулы примерно 105°С (измерено другим прибором). После прогрева устройства на выдвинутый поддончик укладывалась гранула ПСВ диаметром 1,6 мм, устанавливался стеклянный колпак. Поддончик с гранулой вдвигался в нагреватель на определенное время, исчисляемое в целых минутах. По прошествии заданного времени, например, одной минуты, включался вакуум-насос на 20 секунд, затем поддончик с гранулой выдвигался из нагревателя для охлаждения на 10 секунд без снятия вакуума, после чего вакуум-насос отключался. Через 20 секунд вакуум самопроизвольно снижался, стеклянный колпак снимался, гранула снималась с поддончика и ее диаметр измерялся на оптическом микроскопе с двадцатикратным увеличением, с мерной шкалой.

Охлаждение гранулы в вакууме происходит за счет излучения тепловой энергии, т.к. теплоноситель отсутствует. Поэтому и охлаждение происходит быстро, без теплоизолирующего влияния воздуха. Дополнительными экспериментами ранее было установлено, что структура гранул полистирола становится достаточно жесткой уже при 80°С.

Следующая гранула ПСВ такого же диаметра проходила такой же цикл со временем нагрева на одну минуту больше, с теми же параметрами процесса. Все данные и результаты экспериментов записывались в журнал.

Для сравнения, в таком же процессе, с единичными гранулами того же размера, из той же пробы ПСВ, проводилось вспенивание в среде горячего сухого воздуха без применения вакуума на том же лабораторном устройстве и вспенивание гранул на сетчатом поддончике над зеркалом кипящей воды в емкости, прикрытой крышкой (что соответствовало традиционному вспучиванию паром).

Исходные и вспененные гранулы были выложены рядами и сфотографированы вместе с линейкой с миллиметровой шкалой, фигура 1, что позволяет визуально оценить результаты и даже измерить диаметры гранул. Но и без измерений достаточно ясно виден получаемый положительный эффект.

На верхнем ряду представлены гранулы вспененные паром; ясно, как очень быстро вспениваются гранулы ПСВ в первую минуту. Затем их размер увеличивается медленно, достигая максимума на 4-ю минуту. Далее происходит уменьшение диаметра гранул - деструкция. Это происходит из-за потери гранулами вспучивающего агента - изопентана - за счет диффузии.

В среднем ряду расположены гранулы, вспененные в среде горячего сухого воздуха без применения вакуума. Видно, что гранулы вспениваются медленнее, чем в среде пара, на 5-ю минуту достигают максимального размера, но меньшего, чем максимальный размер гранул в случае вспенивания паром, затем размеры гранул уменьшаются из-за потери изопентана. Уместно сказать, что снижение скорости вспенивания гранул легко и в широких пределах достигается снижением температуры нагревателя.

На нижнем ряду расположены гранулы после вспенивания с помощью того же устройства в горячей воздушной среде, при той же температурой задатчика, с применением вакуума. Видно, что вспенивание в этом случае происходит быстрее и в большей степени. Естественно, что скорость и кратность вспенивания в этом случае легко и в широких пределах регулируется температурой нагрева и степенью вакуумирования.

Приведенные сведения доказывают осуществимость способа и возможность достижения поставленной цели.

1. Способ сухого вспенивания гранул полистирола суспензионного вспенивающегося, включающий выдержку гранул в среде горячего воздуха, отличающийся тем, что после кратковременного нагревания гранул их подвергают кратковременному воздействию вакуума, затем охлаждают, не снимая вакуума, и после охлаждения гранул ниже температур вязкотекучего состояния полистирола снимают вакуум.

2. Способ по п.1, отличающийся тем, что сухой нагрев гранул осуществляют в герметичной емкости, заполненной горячим воздухом, а вакуум создают откачкой воздуха из емкости.

3. Способ по п.1, отличающийся тем, что охлаждение гранул осуществляют преимущественно за счет излучения тепловой энергии гранул.



 

Похожие патенты:

Изобретение относится к технологии вспенивания гранул пенополистирола, содержащих пентан или изопентан, и может быть использовано для производства теплоизоляции в строительстве, при изготовлении газифицируемых моделей, в производстве формованных изделий и упаковки.

Изобретение относится к способу и установке для получения вспененных или способных вспениваться полимерных частиц. .

Изобретение относится к химии полимеров и, в частности, к получению вспенивающихся гранул винилароматического полимера. .

Изобретение относится к способу улучшения изолирующей способности вспененных винилароматических полимеров. .

Изобретение относится к вспенивающимся гранулированным материалам, имеющим композиции на основе винилароматических полимеров, содержащие: а) 65-99,8% по массе полимера, полученного путем полимеризации 85-100% по массе одного или более винилароматических мономеров, имеющих общую формулу (I) где n представляет собой ноль или целое число, колеблющееся в диапазоне от 1 до 5, и Y представляет собой галоген, такой как хлор или бром, или алкил или алкоксильную радикальную группу, имеющую от 1 до 4 атомов углерода, и 0-15% по массе -алкилстирола, в котором алкильная группа содержит от 1 до 4 атомов углерода; b) 0,01-20% по массе, рассчитанных по отношению к полимеру (а), сажи, имеющей средний диаметр частиц, колеблющийся в диапазоне от 10 до 1000 нм, и площадь поверхности, колеблющуюся в диапазоне от 5 до 200 м2/г; с) по меньшей мере, одну из следующих добавок (с1)-(с3): с1) 0,01-5% по массе, рассчитанных по отношению к полимеру (а), графита, имеющего средний диаметр частиц, колеблющийся в диапазоне от 0,5 до 50 мкм; с2) 0,01-5% по массе, рассчитанных по отношению к полимеру (а), оксидов, и/или сульфатов, и/или пластинчатых дихалькогенидов металлов групп IIA, IIIA, IIB, IVB, VIB или VIIIB; с3) 0,01-5% по массе, рассчитанных по отношению к полимеру (а), неорганических производных кремния пластинчатого типа; d) 0,01-4,5% по массе, рассчитанных по отношению к полимеру (а), агента зародышеобразования и е) 1-6% по массе, рассчитанных по отношению к 100 частям общей массы (a)-(d), одного или более вспенивающих веществ.

Изобретение относится к способным вспениваться гранулятам термопластичных полимеров. .

Изобретение относится к области химии полимеров, а именно к способу непрерывного приготовления в массе вспениваемых винилароматических полимеров, который включает последовательность следующих операций: i) загрузку в экструдер винилароматического полимера вместе с 0-50 мас.% сополимера (а), полученного полимеризацией одного или более винилароматических мономеров и 0,1-15 мас.% -алкилстирола, и 0-10 мас.% совместимого полимера (б), имеющего кристалличность менее 10% и температуру стеклования (Tg), превышающую 100°С, при условии, что по меньшей мере один из (а) или (б) присутствует в полимерной смеси; ii) нагревание полимеров до температуры, превышающей относительную температуру плавления; iii) введение вспенивающих агентов в расплавленный продукт до начала экструзии через экструзионную головку; iv) формование через экструзионную головку гранул, возможно вспениваемых, по существу сферической формы со средним диаметром, находящимся в диапазоне от 0,2 до 2 мм.
Изобретение относится к строительной отрасли и может быть использовано при изготовлении термоструктурных панелей из пенополистирола, а также панелей, армированных каркасами, включающими металлические элементы и прочие изделия на основе такой технологии для использования в других областях потребительского рынка, а также при производстве упаковочного материала.

Изобретение относится к способу получения способных вспениваться полистиролов с молекулярным весом Mw более чем 170.000 г/моль, причем содержащий вспенивающий агент полистирольный расплав с температурой, по меньшей мере, в 120°С пропускают через сопловую плиту с отверстиями, диаметр которых на выходе сопел составляет максимально 1,5 мм, и после этого гранулируют, а также к способным вспениваться полистиролам EPS с молекулярным весом Mw более чем 170.000 г/моль и с количеством внутренней воды от 0,05 до 1,5 вес.%.

Изобретение относится к области изготовления изделий из гранул вспенивающихся полимеров и композиций на их основе. .

Изобретение относится к оборудованию для изготовления по сухому способу гранулированного пенополистирола, который применяется в качестве теплоизоляционных засыпок, для изготовления формованного пенополистирола в виде плит, скорлуп для упаковок, а также в качестве компонента композиционных материалов, в частности полистиролбетона.
Изобретение относится к технологии изготовления теплоизоляционного пенополистирола для строительства и машиностроения. .

Изобретение относится к аппарату для получения твердых закристаллизованных полимерных частиц. .
Наверх