Трубная заготовка из легированной стали


 


Владельцы патента RU 2469107:

Открытое акционерное общество "Металлургический завод имени А.К. Серова" (RU)

Изобретение относится к металлургии, в частности к производству трубной заготовки диаметром от 90 до 110 мм. Для повышения комплекса потребительских свойств проката и обеспечения однородности макроструктуры проката трубную горячекатаную заготовку выполняют из стали, содержащей следующее соотношение компонентов, мас.%: углерод 0,16-0,20, марганец 0,50-0,90, кремний 0,17-0,37, хром 2,40-2,49, никель 0,05-0,25, молибден 0,15-0,25, ванадий 0,05-0,10, ниобий 0,03-0,06, титан 0,005-0,030, алюминий 0,020-0,050, медь 0,10-0,30, сера 0,0001-0,010, азот 0,001-0,008, железо и неизбежные примеси - остальное, при выполнении соотношения Crэкв.>3,0, где: Crэкв.=[Cr]+2[Mo]+5[V]+1,5[Nb]+1,5[Ti], причем сталь подвергнута модифицирующей обработке кальцием присадкой из расчета введения его в металл на 0,0010-0,0030 мас.%. В качестве примесей сталь содержит, мас.%: фосфор не более 0,015, водород не более 2 ppm, кислорода не более 20 ppm. Сталь имеет максимальные значения показателей по макроструктуре до 2 баллов по каждому виду: центральной пористости, точечной неоднородности, ликвационному квадрату, подкорковым пузырям на глубине не более 2 мм, неметаллические включения: сульфиды, оксиды строчные, силикаты недеформируемые со средним значением не более 2,5 баллов и с максимальным - не более 3,0 баллов, оксиды точечные, силикаты хрупкие со средним значением не более 1,5 баллов и с максимальным - не более 2,0 баллов, силикаты пластичные, нитриды со средним значением не более 1,0 балла и с максимальным - не более 1,5. 2 табл., 1 пр.

 

Изобретение относится к металлургии, в частности к производству трубной заготовки диаметром от 90 до 110 мм.

Наиболее близкой к предлагаемой по качественному и количественному составу стали является трубная заготовка из легированной стали, горячекатаная с заданными параметрами структуры и механических свойств, которая выполнена из стали, включающей углерод 0,16-0,21, марганец 0,70-1,10, кремний 0,17-0,37, хром 0,80-1,10, никель 0,80-1,10, молибден 0,005-0,11, ванадий 0,002-0,015, титан 0,001-0,015, сера 0,20-0,35, кальций 0,001-0,010, азот 0,005-0,015, мышьяк 0,0001-0,03, олово 0,0001-0,2, свинец 0,0001-0,01, цинк 0,0001-0,005, железо и неизбежные примеси - остальное, при выполнении следующих соотношений компонентов: As+Sn+Pb+5xZn≤0,7; Са/S≥0,065; C+Mn/6+(Cr+Mo+V)/5+Ni/15≤0,70. При выполнении этих соотношений и с заданным количественным составом прокат имеет: пластинчатую ферритовую структуру; размер действительного зерна 6-9 баллов; по макроструктуре - центральная часть пористость, точечная неоднородность, ликвационный квадрат, подусадочная ликвация не более 3 баллов по каждому виду; ликвационные полоски не более 2 баллов; по неметаллическим включениям: сульфиды, оксиды точечные, оксиды строчечные, силикаты хрупкие, силикаты пластичные, силикаты недеформированные не более 4,0 баллов по каждому виду включений; механические свойства после нормализации - временное сопротивление разрыву не менее 485 Н/мм2, относительное удлинение не менее 18%. Кроме того, в качестве неизбежных примесей сталь содержит, мас.%: ниобий не более 0,02 и фосфор не более 0,035 (РФ, патент №2333968, C21D 8/10, C22C 38/60, 20.09.2008).

Одним из важнейших требований, предъявляемых к трубной заготовке из легированной стали, является обеспечение однородности макроструктуры и снижение содержания неметаллических включений. Изготовление трубной заготовки из известной стали не позволяет снизить у проката максимальные показатели по макроструктуре и количеству неметаллических включений, а именно: в известном изобретении центральная пористость, точечная неоднородность, ликвационный квадрат, подусадочная ликвация составляют не более 3 баллов по каждому виду, а по неметаллическим включениям - сульфиды, оксиды точечные, оксиды строчечные, силикаты хрупкие, силикаты пластичные, силикаты недеформированные не более 4,0 баллов по каждому виду включений. В результате сужается комплекс потребительских свойств известной трубной заготовки.

Предлагаемое изобретение решает задачу создания трубной заготовки из легированной стали, осуществление которой позволяет достичь технического результата, заключающегося в повышении комплекса потребительских свойств проката путем повышения однородности макроструктуры проката в результате снижения максимальных значений показателей по макроструктуре не более 2 баллов по каждому виду и в результате снижения содержания неметаллических включений по сульфидам, оксидам строчным и силикатам недеформированным не более 3,0 баллов, по оксидам точечным и силикатам хрупким не более 2,0 баллов, по силикатам пластичным и нитридам не более 1,5 баллов.

Сущность заявленного изобретения заключается в том, что в заявленной трубной заготовке из легированной стали с заданными параметрами структуры и чистоты по неметаллическим включениям новым является то, что она выполнена из стали, включающей углерод, марганец, кремний, хром, никель, молибден, ванадий, ниобий, титан, алюминий, медь, серу, азот, железо и неизбежные примеси, при следующих соотношениях компонентов, мас.%: углерод 0,16-0,20; марганец 0,50-0,90; кремний 0,17-0,37; хром 2,40-2,49; никель 0,05-0,25; молибден 0,15-0,25; ванадий 0,05-0,10; ниобий 0,03-0,06; титан 0,005-0,030; алюминий 0,020-0,050; медь 0,10-0,30; сера 0,0001-0,010; азот 0,001-0,008; железо и неизбежные примеси остальное, при выполнении соотношения: Crэкв.>3,0, где Crэкв.=[Cr]+2[Mo]+5[V]+1,5[Nb]+1,5[Ti], кроме того, сталь содержит кальций в присадке из расчета введения его в металл на 0,0010-0,0030%, при этом в качестве неизбежных примесей сталь содержит в мас.%: фосфор не более 0,015; водород не более 2 ppm; кислорода не более 20 ppm, максимальные значения показателей по макроструктуре до 2 баллов по каждому виду (центральная пористость, точечная неоднородность, ликвационный квадрат, подкорковые пузыри на глубину не более 2 мм), содержание неметаллических включений: сульфиды, оксиды строчные, силикаты недеформируемые - по среднему баллу не более 2,5, по максимальному - не более 3,0; оксидам точечным, силикаты хрупкие - по среднему баллу не более 1,5, по максимальному - не более 2,0; силикаты пластичные, нитриды - по среднему баллу не более 1,0, по максимальному - не более 1,5.

Заявленный технический результат достигается следующим образом. Заявленные количественные и качественные сочетания легирующих элементов позволяют снизить верхнюю границу количественной характеристики неметаллических включений и повысить однородность макроструктуры проката, а следовательно, повысить комплекс потребительских свойств, в частности, получить в готовом изделии феррито-перлитную мелкодисперсную структуру с благоприятным сочетанием характеристик прочности и пластичности, свариваемости и обрабатываемости резанием. При этом количественное содержание элементов в составе стали выбрано таким образом, что каждый элемент выполняет свое основное назначение, а в совокупности заявляемый качественный и количественный состав стали для трубной заготовки обеспечивает достижение заявленного технического результата: повышение однородности макроструктуры проката в результате снижения, максимальных значений показателей по макроструктуре и в результате снижения содержания неметаллических включений по сравнению с прототипом.

Качественный и количественный состав стали в заявленной трубной заготовке обусловлен следующим.

Железо является основным компонентом стали.

Углерод участвует в протекании двух процессов. Первый процесс - это образование графитовых включений в структуре стали, второй - образование частиц карбидной фазы в металлической матрице. При содержании углерода менее 0,16% образуется недостаточное количество как свободного углерода, так и карбидов, что приводит к повышенному износу изделий в процессе эксплуатации и снижению прочностных свойств материала. При содержании углерода более 0,20% происходит выделение избыточного количества частиц карбидной фазы неблагоприятной формы, что приводит к снижению пластических свойств стали. При этом в обоих случаях это сказывается отрицательно на однородности проката. Содержание углерода в пределах 0,16-0,20% является оптимальным и обеспечивает достижение заявленного технического результата.

Марганец, молибден и хром используют, с одной стороны, как упрочнители твердого раствора, с другой стороны, как элементы, повышающие устойчивость переохлажденного аустенита стали. Марганец, растворяясь в металлической основе, стабилизирует перлит, способствуя, тем самым, формированию однородной макроструктуры стали. При содержании марганца менее 0,50% в структуре стали наблюдается присутствие включений феррита. При содержании марганца более 0,90% наблюдается локальное пересыщение ферритной составляющей перлита марганцем.

Хром представляет собой эффективный легирующий элемент, повышающий коррозионную стойкость к газообразному диоксиду углерода, наиболее дешевый элемент, повышает твердость и прочность, незначительно уменьшает пластичность. Хром при заявленном содержании в стали в количестве 2,40-2,49% полностью растворяется в цементите, образуя сложные карбиды типа (Fe, Cr)3С, способствует получению высокой и равномерной твердости, износостойкой поверхности в результате повышения однородности макроструктуры.

Молибден эффективен в отношении повышения прочности и в состав стали, с этой целью, вводится по мере необходимости. Молибден в присутствии хрома образует карбид (Мо, Fe)23С6. Наличие молибдена в заявленных пределах позволяет получать равномерную и мелкозернистую структуру, увеличивает сопротивление стали ползучести, тормозит процесс роста и коагуляции карбидов. При содержании молибдена в стали менее 0,15% снижается количество образующихся соединений, структура стали отличается неоднородностью. При содержании более 0,25% образуется избыточное количество соединений молибдена.

Медь (0,10-0,30%) и ниобий (0,03-0,06%) в заданных пределах положительно влияют на однородность структуры и обеспечивают повышение механических свойств и износостойкости в условиях высоких температур и теплосмен. Кроме того, ниобий является карбонитридообразующим элементом. При заданном содержании его в стали образуется оптимальное количество соединений ниобия, что положительно сказывается на количественном содержании неметаллических включений.

Ванадий вводят в композицию данной стали с целью обеспечения мелкодисперсной, однородной зеренной структуры. Ванадий измельчает зерно микроструктуры. Одновременно ванадий управляет процессами в нижней части аустенитной области: определяет склонность к росту зерна аустенита, стабилизирует структуру при термомеханической обработке, повышает температуру рекристаллизации и, как следствие, влияет на характер γ-α-превращения.

Ванадий характеризуется отсутствием p-электронов и наличием незаполненных d-орбиталей ядра атома, следствием чего является понижение термодинамической активности углерода при вводе ванадия в расплав. Это приводит к процессу образования высокодисперсных соединений ванадия (карбидов, нитридов, карбонитридов), имеющих округлую форму, которые, равномерно распределяясь по границам зерен, измельчают и упрочняют их.

При содержании ванадия менее 0,05% снижается количество образующихся соединений, процесс измельчения зерна не происходит в полном объеме. При содержании ванадия более 0,10% образуется избыточное количество соединений ванадия, что способствует хрупкому разрушению. Ванадий в пределах 0,05-0,10% способствует уменьшению величины зерна. Он задерживает рост зерна в период рекристаллизации при высоких температурах.

Кремний относится к ферритообразующим элементам. Нижний предел по кремнию - 0,17% - обусловлен технологией раскисления стали. Верхнее количественное значение содержания кремния 0,37% является оптимальным.

Кремний способствует выделению углерода в свободном виде в соответствии со стабильной системой железо-углерод, что значительно повышает показатели износостойкости сплава. Количественное содержание кремния в заявленном составе стали соответствует количественному содержанию углерода и, кроме того, обеспечивает требования к однородности макроструктуры и количеству неметалических включений. Для заявленного количественного содержания углерода в заявленной стали кремний в количестве менее 0,17% не оказывает значительного влияния на процесс графитизации, вследствие чего углерод находится в связанном состоянии, что приводит к значительному износу изделий при эксплуатации в условиях интенсивного трения. При содержании кремния более 0,37% в структуре стали наблюдается повышенное количество крупных включений графита неблагоприятной формы.

Никель в заявленном количестве (0,05-0,25%) нейтрализует вредные влияния со стороны меди, которая также входит в состав заявленной стали, которые заключаются в возможности образования трещин на поверхности во время горячей прокатки. Также способствует поглощению газов металлом в процессе плавки, в особенности водорода, который вызывает образование в слитках газовых пузырей, а в случае крупнозернистой первичной структуры - трещин по границам зерен.

Сера глобулизирует сульфидные включения и участвует в формировании уровня пластичности стали. Нижний предел (0,0001%) обусловлен вопросами технологичности производства.

Ограничение по верхнему уровню содержания серы (0,010%) обусловлено тем, что при высокой концентрации серы плохо завариваются во время обработки давлением усадочные пустоты слитка, которые обычно являются местом скопления неметаллических включений, особенно сульфидов.

Титан - сильный карбонитридообразователь и раскислитель стали. Заявленный интервал количественных значений титана (0,005-0,030%) в составе стали является оптимальным.

Азот способствует образованию нитридов в стали. Верхний предел содержания азота - 0,008% - обусловлен необходимостью получения заданного уровня пластичности и вязкости стали, что оказывает влияние на однородность структуры, а нижний предел - 0,001% - вопросами технологичности производства.

Алюминий является раскисляющим и модифицирующим элементом. Кроме того, он связывает азот в нитриды. При содержании алюминия менее 0,020% его воздействие проявляется слабо. Увеличение содержания алюминия выше 0,050% приводит к разнозернистости микроструктуры стали.

Кальций - это элемент, модифицирующий неметаллические включения. Кальций, обладая повышенным химическим сродством к сере и кислороду, очищает границы зерен от неметаллических включений. В заявленной трубной заготовке сталь содержит кальций в присадке из расчета введения его в металл на 0,0010-0,0030%. Во время плавки кальций вводят в сталь в качестве присадки, подвергая тем самым сталь модифицирующей обработке кальцием из расчета его введения в металл на 0,0010-0,0030%. Кальций, являясь наиболее адсорбционно-активным элементом в стали и конкурируя с карбонитридообразующими элементами (титаном, ванадием, ниобием), а также с марганцем и азотом, снижает их адсорбцию в границах зерен и тем самым повышает межзеренную связь, повышая однородность макроструктуры проката. Улучшение обрабатываемости стали достигается модифицированием кальцием (вводится в жидкую сталь в виде силикокальция), который глобулизирует сульфидные включения, что положительно влияет на обрабатываемость, но не так активно, как сера и фосфор. Как показала практика, модифицирование кальцием в заданных количествах приводит к:

- повышению степени чистоты стали по газам, вредным примесям и неметаллическим включениям вследствие рафинирования расплава в процессе раскисления и десульфурации;

- повышению однородности структуры стали, равномерности распределения мелкодисперсных глобулярных неметаллических включений в результате модифицирования;

- повышению чистоты границ зерен по охрупчивающим примесным и микролегирующим элементам и пленочным гетерофазным выделениям благодаря микролегированию, в основе которого лежат явления межкристаллитной внутренней адсорбции.

Выполнение соотношения Crэкв.>3,0, где Сrэкв.=[Cr]+2[Mo]+5[V]+1,5[Nb]+1,5[Ti], способствует процессу образования в оптимальном количестве высокодисперсных соединений: карбидов, нитридов, карбонитридов, имеющих округлую форму, которые, равномерно распределяясь по границам зерен, измельчают и упрочняют их, что обеспечивает достижение заявленного технического результата, а также повышает прочностные и пластические свойства стали, не вызывая при этом появления напряжений.

В качестве примесей заявленная сталь содержит в мас.%: фосфор 0,001-0,015; водород не более 2 ppm; кислорода не более 20 ppm. Заявленное содержание водорода и кислорода в примеси исключает опасность образования в готовом металле дефектов в виде свищей, флокенов.

Фосфор определяет уровень пластичности стали, который обуславливается ее однородностью. Содержание фосфора в заявленном составе примесей стали в количестве 0,001-0,015% является оптимальным и оказывает положительное влияния на получение заданного уровня однородности структуры.

В результате контрольных плавок были получены трубные заготовки со следующими характеристиками: максимальные значения показателей по макроструктуре до 2 баллов по каждому виду (центральная пористость, точечная неоднородность, ликвационный квадрат, подкорковые пузыри на глубину не более 2 мм), содержание неметаллических включений: сульфиды, оксиды строчные, силикаты недеформируемые - по среднему баллу не более 2,5, по максимальному - не более 3,0; оксидам точечным, силикаты хрупкие - по среднему баллу не более 1,5, по максимальному - не более 2,0; силикаты пластичные, нитриды - по среднему баллу не более 1,0, по максимальному - не более 1,5.

Сведения, подтверждающие возможность осуществления заявленного изобретения с получением заявленного технического результата, приведены в примере.

Пример осуществления изобретения.

Выплавку исследуемой стали выполняли с химическим составом в мас.%: C=0,19; Mn=0,60; Si=0,31; Cr=2,45; Ni=0,14; Cu=0,27; Mo=0,20; Ti=0,008; V=0,073; Al=0,027; N=0,0077; Nb=0,039; H=1,7 ppm; O2=18 ppm; Crэ=3,4455, железо - остальное, при выполнении соотношения: Crэкв.>3,0, где Crэкв.=[Cr]+2[Mo]+5[V]+1,5[Nb]+1,5[Ti].

Выплавку выполняли в 80-тонных дуговых сталеплавильных печах (ДСП) с использованием в шихте до 40% жидкого чугуна.

Предварительное легирование металла по марганцу и кремнию производили в ковше при выпуске из ДСП. После выпуска производили продувку металла аргоном через донный продувочный блок, во время которой сталь раскисляется алюминием.

Дальнейшую обработку металла производили на установке внепечной обработки стали (УВОС), где осуществляется наведение рафинировочного шлака присадкой извести и плавикового шпата для снижения неметаллических включений и снижения газов в стали; продувка металла аргоном через донный продувочный блок, десульфурация, нагрев металла до необходимой температуры, корректировка химического состава металла присадкой кусковых ферросплавов и порошковой проволоки с наполнителями, в т.ч. присадка силикокальциевой проволокой по расчету на 0,0010-0,0030% кальция.

По окончании обработки на УВОС производили вакуумирование металла на установке вакуумной дегазации. В процессе вакуумирования обеспечивается содержание водорода в металле не более 2,0 ppm и удаление газов.

Во время вакуумирования производили окончательную корректировку по химическому составу. Разливка осуществлялась в изложницы с защитой струи аргоном.

В результате горячей прокатки получили трубную заготовку диаметром 90 мм и 110 мм длиной 5900 мм.

Трубная заготовка 90 мм:

- макроструктура по ГОСТ 10243-75 (в скобках указаны количественные характеристики по прототипу): центральная пористость - 1 (3) балл, точечная неоднородность - 1 (3) балл, ликвационный квадрат - 0 (3) балл, подусадочная ликвация - 0 (3) балл. Металл нерадиоактивный;

- неметаллические включения, контролируемые по ГОСТ 1778-70 метод Ш6:

Вид включения Средний балл Максимальный балл
С (сульфиды) 2,3 2,5 (4)
СН (силикаты недеформированные) 2,5 3,0 (4)
Н (нитриды) 0 0
ОТ (оксиды точечные) 0 0 (4)
ОС (оксиды строчные) 2,5 3,0 (4)
СП (силикаты пластичные) 0 0 (4)
СХ (силикаты хрупкие) 0 0 (4)

Трубная заготовка 110 мм:

- макроструктура по ГОСТ 10243-75 (в скобках указаны количественные характеристики по прототипу): центральная пористость - 1 (3) балл, точечная неоднородность - 2 (3) балл, ликвационный квадрат - 1 (3) балл, подусадочная ликвация - 0 (3) балл. Металл нерадиоактивный;

- неметаллические включения, контролируемые по ГОСТ 1778-70 метод Ш6:

Вид включения Средний балл Максимальный балл
С (сульфиды) 2,5 2,5 (4)
СН (силикаты недеформированные) 2,0 2,5 (4)
Н (нитриды) 0 0
ОТ (оксиды точечные) 0 0 (4)
ОС (оксиды строчные) 2,5 3,0 (4)
СП (силикаты пластичные) 0 0 (4)
СХ (силикаты хрупкие) 0 0 (4)

Как следует из результатов плавки, заявленная трубная заготовка из легированной стали по сравнению с известной - с прототипом позволила достичь заявленного технического результата: не только снизить верхнюю границу количественной характеристики неметаллических включений, но и исключить из неметаллических включений нитриды, оксиды точечные, силикаты пластичные, и, тем самым, повысить однородность макроструктуры проката, а следовательно, повысить комплекс потребительских свойств, в частности, получить в готовом изделии феррито-перлитную мелкодисперсную структуру с благоприятным сочетанием характеристик прочности и пластичности, свариваемости и обрабатываемости резанием.

Таким образом, из вышеизложенного следует, что предлагаемое изобретение при осуществлении позволяет достичь технического результата, заключающегося в возможности повышения комплекса потребительских свойств проката путем повышения однородности макроструктуры проката и снижения содержания неметаллических включений (повышение однородности макроструктуры проката в результате снижения максимальных значений показателей по макроструктуре не более 2 баллов по каждому виду; снижение содержания неметаллических включений по сульфидам, оксидам строчным и силикатам недеформированным не более 3,0 баллов, по оксидам точечным и силикатам хрупким не более 2,0 баллов, по силикатам пластичным и нитридам не более 1,5 баллов).

Внедрение в производство трубной заготовки из заявленной легированной стали обеспечивает повышение уровня потребительских свойств при обеспечении низкого содержания неметаллических включений и однородной макроструктуры проката.

Трубная горячекатаная заготовка из легированной стали с заданными параметрами структуры и чистоты по неметаллическим включениям, отличающаяся тем, что она выполнена из стали при следующем соотношении компонентов, мас.%:

углерод 0,16-0,20
марганец 0,50-0,90
кремний 0,17-0,37
хром 2,40-2,49
никель 0,05-0,25
молибден 0,15-0,25
ванадий 0,05-0,10
ниобий 0,03-0,06
титан 0,005-0,030
алюминий 0,020-0,050
медь 0,10-0,30
сера 0,0001-0,010
азот 0,001-0,008
железо и неизбежные
примеси остальное,

причем сталь подвергнута модифицирующей обработке кальцием присадкой из расчета введения его в металл на 0,0010-0,0030 мас.%, а в качестве неизбежных примесей она содержит, мас.%: фосфор не более 0,015, водород не более 2 ppm, кислород не более 20 ppm, при выполнении соотношения: Crэкв.>3,0, где
Crэкв.=[Cr]+2[Mo]+5[V]+1,5[Nb]+1,5[Ti],
при этом она имеет макроструктуру по центральной пористости, точечной неоднородности, ликвационному квадрату, подкорковым пузырям на глубине не более 2 мм с максимальным значением до 2 баллов по каждому виду, неметаллические включения по сульфидам, оксидам строчным, силикатам недеформируемым со средним значением не более 2,5 баллов и с максимальным - не более 3,0 баллов, по оксидам точечным, силикатам хрупким со средним значением не более 1,5 балла и с максимальным - не более 2,0 баллов, по силикатам пластичным, нитридам со средним значением не более 1,0 балла и с максимальным - не более 1,5 балла.



 

Похожие патенты:

Изобретение относится к прокатному производству и может быть использовано при производстве широких горячекатаных листов толщиной 20-23 мм класса прочности К60, предназначенных для изготовления труб для магистральных газопроводов.

Изобретение относится к прокатному производству и может быть использовано при производстве широких горячекатаных листов для изготовления труб большого диаметра, применяемых в магистральных газопроводах.

Изобретение относится к прокатному производству. .
Изобретение относится к области металлургии, а именно к составам сортовой углеродистой стали. .

Изобретение относится к области металлургии, конкретно к технологии производства горячеоцинкованной полосы повышенной прочности, предназначенной для изготовления деталей автомобиля методом штамповки.

Сталь // 2439190
Изобретение относится к области металлургии, в частности к легированной стали, используемой для изготовления деталей атомного и гидротурбинного оборудования, работающего при температурах от минус 30 до 350°С.

Изобретение относится к металлургии, а именно к производству углеродистых и низколегированных сталей для изготовления электросварных труб, используемых для строительства трубопроводов, транспортирующих агрессивные в коррозионном отношении жидкости, в частности водные среды, содержащие ионы хлора, сероводород, углекислый газ, механические примеси и другие компоненты.
Изобретение относится к области металлургии, а именно к производству проката для пружинно-рессорных сталей, используемых для железнодорожного крепежа. .
Изобретение относится к области металлургии, а именно к производству проката круглого поперечного сечения из стали, используемого для холодной осадки. .

Изобретение относится к металлургии, конкретнее, к производству конструкционных сталей высокой прочности улучшенной свариваемости для применения в судостроении, топливно-энергетическом комплексе, транспортном и тяжелом машиностроении, мостостроении и др.
Изобретение относится к области металлургии, в частности к производству круглого сортового проката. .
Изобретение относится к области металлургии, а именно к созданию конструкционных ферритных коррозионно-стойких сталей, предназначенных для изготовления технологического оборудования, эксплуатирующегося в средах, вызывающих общую и питтинговую коррозию.

Изобретение относится к области металлургии, а именно к составам ферритных коррозионно-стойких сталей, предназначенных для изготовления технологического оборудования, работающего в различных агрессивных средах, преимущественно вызывающих появление локальных видов коррозии.
Изобретение относится к области черной металлургии, в частности к составам сталей, которые могут быть использованы в машиностроении. .

Изобретение относится к области металлургии, а именно к получению ковкой стали, обладающей прекрасной деформируемостью при ковке. .
Изобретение относится к области металлургии, конкретно к производству стальных листов бронезащитного назначения для средств индивидуальной защиты, легкобронированных боевых машин, летательных аппаратов, бронированных сооружений и строительных бронезащитных конструкций.

Изобретение относится к области металлургии, а именно к производству аустенитной стали, используемой для изготовления изделий для надземного или подземного строительства.
Изобретение относится к области металлургии, а именно к литой жаростойкой ферритной стали для изготовления колосников агломерационных машин, работающих в условиях циклического нагрева при температурах свыше 1000°С.
Изобретение относится к области нефтедобычи, в частности к обсадным и насосно-компрессорным трубам, предназначенным для эксплуатации в агрессивных средах, содержащих сероводород и углекислый газ.

Изобретение относится к черной металлургии, а именно к получению сталей с особыми технологическими свойствами, применяемых для изготовления ответственных деталей машин.
Наверх